Docly

Bài toán tìm m để phương trình có 2 nghiệm trái dấu

Tìm m để phương trình có 2 nghiệm trái dấu là một dạng bài tập mà chúng ta hay bắt gặp trong Toán 9 và đề thi tuyển sinh vào lớp 10. Để giúp các em học tốt phần này, Trang Tài Liệu gửi tới các bạn lý thuyết cơ bản và một số dạng bài tập để các em biết cách làm các bài toán Tìm m để phương trình có hai nghiệm trái dấu. Nội dung bài sẽ giúp các em học tốt môn Toán lớp 9 hiệu quả hơn, chuẩn bị cho các bài thi học kì và ôn thi vào lớp 10 hiệu quả nhất. Dưới đây là nội dung chi tiết, các em cùng tham khảo nhé.

Kiến thức cần nhớ khi làm dạng bài tìm m để phương trình có hai nghiệm trái dấu

Định lý Vi-ét

Nếu phương trình a{x^2} + bx + c = 0\left( {a \ne 0} \right) có hai nghiệm {x_1};{x_2} phân biệt thì \left\{ \begin{array}{l}
S = {x_1} + {x_2} = \frac{{ - b}}{a}\\
P = {x_1}{x_2} = \frac{c}{a}
\end{array} \right.

+ Lưu ý: Trước khi áp dụng định lý Vi ét, ta cần tìm điều kiện để phương trình có 2 nghiệm phân biệt.

Xác định dấu các nghiệm của phương trình bậc hai

Điều kiện để phương trình có hai nghiệm trái dấu, cùng dấu, cùng dương, cùng âm,…

+ Để phương trình có hai nghiệm phân biệt trái dấu \Leftrightarrow P < 0

+ Để phương trình có hai nghiệm phân biệt cùng dấu \Leftrightarrow \left\{ \begin{array}{l}
\Delta  > 0\\
P > 0
\end{array} \right.” width=”93″ height=”49″></p>



<p>+ Để phương trình có hai nghiệm phân biệt cùng dấu dương <img decoding=

Bài tập tự luận về bài toán tìm m để phương trình có hai nghiệm

Bài 1: Tìm m để phương trình {x^2} - \left( {{m^2} + 1} \right)x + {m^2} - 7m + 12 = 0 có 2 nghiệm trái dấu

Hướng dẫn:

Để phương trình có hai nghiệm phân biệt trái dấu \Leftrightarrow P < 0.

Lời giải:

Để phương trình có hai nghiệm phân biệt trái dấu \Leftrightarrow P < 0

\begin{array}{l}
 \Leftrightarrow {m^2} - 7m + 12 < 0\\
 \Leftrightarrow \left( {m - 3} \right)\left( {m - 4} \right) < 0
\end{array}

Xảy ra hai trường hợp:

Trường hợp 1: \left\{ \begin{array}{l}
m - 3 > 0\\
m – 4 < 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
m > 3\\
m < 4
\end{array} \right. \Leftrightarrow 3 < m < 4

Trường hợp 2: \left\{ \begin{array}{l}
m - 3 < 0\\
m - 4 > 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
m < 3\\
m > 4
\end{array} \right.” width=”202″ height=”49″>(vô lý)</p>



<p>Vậy với 3 < m < 4 thì phương trình có hai nghiệm trái dấu</p>



<p><strong>Bài 2:</strong> Tìm m để phương trình <img loading= có hai nghiệm phân biệt cùng dấu.

Hướng dẫn:

Để phương trình có hai nghiệm phân biệt cùng dấu \Leftrightarrow \left\{ \begin{gathered}
  \Delta ' > 0 \hfill \\
  P > 0 \hfill \\ 
\end{gathered}  \right.” width=”99″ height=”48″>.</p>



<p><em><strong>Lời giải:</strong></em></p>



<figure class=3{x^2} - 4mx + {m^2} - 2m - 3 = 0

Để phương trình có hai nghiệm phân biệt \Leftrightarrow \Delta ' > 0″ width=”79″ height=”18″></p>



<p>Có <img loading=

\begin{gathered}
   = 4{m^2} - 3{m^2} + 6m + 9 \hfill \\
   = {m^2} + 6m + 9 \hfill \\
   = {\left( {m - 3} \right)^2} > 0\forall m \ne 3 \hfill \\ 
\end{gathered}

Với mọi m ≠ 3, phương trình có hai nghiệm phân biệt thỏa mãn hệ thức Vi-ét:

\left\{ \begin{gathered}
  {x_1} + {x_2} = \frac{{ - b}}{a} = \frac{{4m}}{3} \hfill \\
  {x_1}{x_2} = \frac{c}{a} = \frac{{{m^2} - 2m - 3}}{3} \hfill \\ 
\end{gathered}  \right.

Để phương trình có hai nghiệm phân biệt cùng dấu khi và chỉ khi:

P > 0 \Leftrightarrow 3\left( {{m^2} - 2m - 3} \right) > 0

Xảy ra hai trường hợp:

Trường hợp 1: \left\{ \begin{gathered}
  m + 1 > 0 \hfill \\
  m – 3 > 0 \hfill \\ 
\end{gathered}  \right. \Leftrightarrow \left\{ \begin{gathered}
  m >  – 1 \hfill \\
  m > 3 \hfill \\ 
\end{gathered}  \right. \Rightarrow m > 3″ width=”295″ height=”48″></p>



<p>Trường hợp 2: <img loading=

Vậy với m < -1 hoặc m < 3 nên phương trình có hai nghiệm phân biệt cùng dấu

Bài 3: Tìm m để phương trình {x^2} - \left( {2m + 3} \right)x + m = 0 có hai nghiệm phân biệt cùng dấu âm

Hướng dẫn:

Để phương trình có hai nghiệm cùng dấu âm \Leftrightarrow \left\{ \begin{gathered}
  \Delta  > 0 \hfill \\
  P > 0 \hfill \\
  S < 0 \hfill \\ 
\end{gathered}  \right.

Lời giải:

Để phương trình có hai nghiệm cùng dấu âm \Leftrightarrow \left\{ \begin{array}{l}
\Delta  > 0\\
P > 0\\
S < 0
\end{array} \right.

Với \Delta  > 0 \Leftrightarrow {\left( {2m + 3} \right)^2} – 4m > 0″ width=”241″ height=”27″></p>



<figure class=\begin{array}{l}
 \Leftrightarrow 4{m^2} + 12m + 9 - 4m > 0\\
 \Leftrightarrow 4{m^2} + 8m + 9 > 0\\
 \Leftrightarrow 4\left( {{m^2} + 2m + 1} \right) + 5 > 0\\
 \Leftrightarrow 4{\left( {m + 1} \right)^2} + 5 > 0\forall m
\end{array}

Với P > 0 \Leftrightarrow m > 0″ width=”127″ height=”17″></p>



<p>Với <img loading= kết hợp với m > 0

Vậy không tồn tại m để phương trình có hai nghiệm phân biệt cùng dấu âm

Bài 4: Tìm m để phương trình {x^2} - 2mx + 2m - 4 = 0 có hai nghiệm phân biệt cùng dấu dương.

Hướng dẫn:

Để phương trình có hai nghiệm cùng dấu dương \Leftrightarrow \left\{ \begin{gathered}
  \Delta ' > 0 \hfill \\
  P > 0 \hfill \\
  S > 0 \hfill \\ 
\end{gathered}  \right.” width=”101″ height=”70″></p>



<p><em><strong>Lời giải:</strong></em></p>



<p>Để phương trình có hai nghiệm cùng dấu dương <img decoding=\begin{array}{l}
 \Leftrightarrow {m^2} - 2m + 4 > 0\\
 \Leftrightarrow \left( {{m^2} - 2m + 1} \right) + 3 > 0\\
 \Leftrightarrow {\left( {m - 1} \right)^2} + 3 > 0\forall m
\end{array}

Với P > 0 \Leftrightarrow 2m – 4 > 0 \Leftrightarrow m > 2″ width=”248″ height=”19″></p>



<p>Với <img decoding= (m là tham số). Chứng minh phương trình luôn có hai nghiệm trái dấu.

Hướng dẫn giải

Ta có a.c = 1.(-1) < 0 với mọi m nên phương trình (*) luôn có hai nghiệm trái dấu với mọi m.

Vậy phương trình có hai nghiệm trái dấu với mọi giá trị của tham số m.

Một số bài tập trắc nghiệm về tìm m để phương trình có hai nghiệm

Câu 1: Cho phương trình x2 – 2x – 1 = 0 (m là tham số). Tìm khẳng định đúng

A. Phương trình luôn có hai nghiệm trái dấu.

B. Phương trình vô nghiệm < /p>

C. Phương trình có hai nghiệm cùng dấu

D. Phương trình có nghiệm kép

Giải

Vì ac = 1.(-1) = -1 < 0 nên phương trình có 2 nghiệm trái dấu

Đáp án đúng là A

Câu 2: Cho phương trình x2 – (2m + 1)x + m2 + m – 6 = 0. Tìm m để phương trình có 2 nghiệm âm.

A. m > 2               

B. m < -4             

C. m > 6               

D. m < -3

Giải

Phương trình có 2 nghiệm cùng dấu âm khi Tìm m để phương trình bậc hai có hai nghiệm cùng dấu, trái dấu - Toán lớp 9

Δ = (2m + 1)2 – 4(m2 + m – 6) = 4m2 + 4m + 1 – 4m2 – 4m + 24 = 25 > 0 với mọi giá trị của m(1)

Tìm m để phương trình bậc hai có hai nghiệm cùng dấu, trái dấu - Toán lớp 9

Suy ra m < -3 đồng thời thỏa mãn (1), (2) và (3)

Vậy m < -3 thỏa mãn đề bài.

Đáp án đúng là D

Câu 3: Cho phương trình: x2 – 2mx + 2m – 4 = 0. Có bao nhiêu giá trị nguyên của m nhỏ hơn 2020 để phương trình có 2 nghiệm dương phân biệt.

A. 2016

B. 2017                  

C. 2018

D. 2019

Giải

Phương trình có 2 nghiệm phân biệt cùng dấu dương khi Tìm m để phương trình bậc hai có hai nghiệm cùng dấu, trái dấu - Toán lớp 9

Với Δ’ > 0 ⇔ m2 – (2m – 4) > 0 ⇔ (m2 – 2m + 1) + 3 > 0 ⇔ (m – 1)2 + 3 > 0 ∀ m(1)

Với P > 0 ⇔ 2m – 4 > 0 ⇔ m > 2(2)

Với S > 0 ⇔ 2m > 0 ⇔ m > 0(3)

Từ (1), (2), (3) ta có các giá trị m cần tìm là m > 2

Suy ra số các giá trị nguyên của m thỏa mãn: 2 < m < 2020 có 2017 số

Đáp án đúng là B

Câu 4: Cho phương trình: x2 – 2mx – 6m – 9 = 0. Tìm m để phương trình có 2 nghiệm trái dấu thỏa mãn x12+x22=13

Tìm m để phương trình bậc hai có hai nghiệm cùng dấu, trái dấu - Toán lớp 9

Giải

Phương trình có 2 nghiệm trái dấu khi: Tìm m để phương trình bậc hai có hai nghiệm cùng dấu, trái dấu - Toán lớp 9

Theo Vi-et ta có: Tìm m để phương trình bậc hai có hai nghiệm cùng dấu, trái dấu - Toán lớp 9

Tìm m để phương trình bậc hai có hai nghiệm cùng dấu, trái dấu - Toán lớp 9

Đáp án đúng là D

Câu 5: Cho phương trình: x2 – 8x + m + 5 = 0. Gọi S là tập hợp chứa tất cả các giá trị nguyên của m để phương trình có 2 nghiệm cùng dấu. Tính tổng tất cả các phần tử của S

A. 30               

B. 56             

C. 18            

D. 29

Giải

Phương trình có 2 nghiệm cùng dấu khi Tìm m để phương trình bậc hai có hai nghiệm cùng dấu, trái dấu - Toán lớp 9

Với Δ’ ≥ 0 ⇔ 16 – m – 5 ≥ 0 ⇔ 11-m ≥ 0 ⇔ m ≤ 11 (1)

Với P > 0 ⇔ m + 5 > 0 ⇔ m > -5(2)

Từ (1), (2) ta có các giá trị m cần tìm là -5 < m ≤ 11

Suy ra S = {-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10,11}

Vậy tổng tất cả các phần tử của S là 56

Đáp án đúng là B

Câu 6: Cho phương trình: 2x2 + (2m – 1)x + m – 1 = 0. Tìm m để phương trình có 2 nghiệm âm.

A. m > 3               

B. m < -1             

C. m > 1               

D. m < -3

Giải

Phương trình có 2 nghiệm cùng dấu âm khi Tìm m để phương trình bậc hai có hai nghiệm cùng dấu, trái dấu - Toán lớp 9

Tìm m để phương trình bậc hai có hai nghiệm cùng dấu, trái dấu - Toán lớp 9

Từ (1), (2), (3) ta có các giá trị của m cần tìm là: m > 1

Đáp án đúng là C

Câu 7: Cho phương trình mx2 + 2(m – 2)x + m – 3 = 0. Xác định m để phương trình có hai nghiệm trái dấu.

A. m > 0          

B. 1 < m < -1

C. 0 <m < 3          

D. m < 3

Giải

Để phương trình có hai nghiệm trái dấu thì m ≠ 0 và a.c < 0

Tìm m để phương trình bậc hai có hai nghiệm cùng dấu, trái dấu - Toán lớp 9

Suy ra các giá trị m cần tìm là 0 < m < 3

Đáp án đúng là C

Câu 8: Tìm m để phương trình  mx2 – (5m – 2)x + 6m – 5 = 0 có hai nghiệm đối nhau.

Tìm m để phương trình bậc hai có hai nghiệm cùng dấu, trái dấu - Toán lớp 9

Giải

Xét phương trình: mx2 – (5m – 2)x + 6m – 5 = 0

Để để phương trình có hai nghiệm đối nhau thì:

Tìm m để phương trình bậc hai có hai nghiệm cùng dấu, trái dấu - Toán lớp 9

Vậy Tìm m để phương trình bậc hai có hai nghiệm cùng dấu, trái dấu - Toán lớp 9 thì phương trình có hai nghiệm đối nhau.

Đáp án đúng là B

Câu 9: Tìm  giá trị m để phương trình 2x2 + mx + m – 3 = 0 có 2 nghiệm trái dấu và nghiệm âm có giá trị tuyệt đối lớn hơn nghiệm dương.

A. 0 < m < 3

B. -1 < m < 3             

C. m < 2    

D. m > -3

Giải

Để phương trình có hai nghiệm trái dấu thì: a.c < 0 ⇔ 2.(m-3) < 0 ⇔ m < 3  (1)

Giả sử phương trình có hai nghiệm trái dấu: x1 < 0 < x2

Với m < 3 , áp dụng hệ thức Vi- ét ta có:

Tìm m để phương trình bậc hai có hai nghiệm cùng dấu, trái dấu - Toán lớp 9

Vì nghiệm âm có giá trị tuyệt đối lớn hơn nghiệm dương nên:

|x1| > |x2| trong đó x1 < 0; x2 > 0 nên Tìm m để phương trình bậc hai có hai nghiệm cùng dấu, trái dấu - Toán lớp 9 (2)

Từ (1) và (2) suy ra 0 < m < 3

Vậy 0 < m < 3 thì phương trình có hai nghiệm trái dấu và nghiệm âm có giá trị tuyệt đối lớn hơn nghiệm dương.

Đáp án đúng là A

Câu 10: Tìm  giá trị m để phương trình  x2 – 2(m – 1)x + m – 3 = 0 có 2 nghiệm trái dấu và bằng nhau về giá trị tuyệt đối.

A. m = 1             

B. m = 4

C. m = 2

D. m = -3

Giải

Xét phương trình: x2 – 2(m – 1)x + m – 3 = 0 có: a = 1, b = -2(m – 1), c = m – 3

Phương trình có 2 nghiệm trái dấu và bằng nhau về giá trị tuyệt đối

Tìm m để phương trình bậc hai có hai nghiệm cùng dấu, trái dấu - Toán lớp 9

Vậy với m = 1 thì phương trình đã cho có hai nghiệm trái dấu và bằng nhau về giá trị tuyệt đối.

Đáp án đúng là A

Bài tập tự luyện về bài toán tìm m để phương trình có hai nghiệm

Bài 1: Tìm m để phương trình {x^2} - 2\left( {m + 1} \right)x + m + 4 = 0 có hai nghiệm phân biệt:

a) Trái dấu.b) Cùng dấu.
c) Cùng dấu âm.d) Cùng dấu dương.

Bài 2: Tìm m để phương trình {x^2} - 2mx - 6m - 9 = 0 có hai nghiệm phân biệt trái dấu thỏa mãn x_1^2 + x_2^2 = 13

Bài 3: Tìm m để phương trình {x^2} - \left( {2m + 3} \right)x + m = 0 có hai nghiệm phân biệt:

a) Trái dấu.b) Cùng dấu.
c) Cùng dấu âm.d) Cùng dấu dương.

Bài 4: Tìm m để phương trình {x^2} - 8x + m + 5 = 0 có hai nghiệm phân biệt:

Bài 5: Tìm m để phương trình {x^2} - 2mx + 5m - 4 = 0 có hai nghiệm phân biệt:

Bài 6: Tìm m để phương trình 2{x^2} + \left( {2m - 1} \right)x + m - 1 = 0 có hai nghiệm phân biệt cùng dấu âm

Bài 7: Tìm m để phương trình {x^2} - 2mx + 2m - 4 = 0 có hai nghiệm phân biệt cùng dấu âm

Bài 8: Tìm m để phương trình {x^2} - \left( {m + 1} \right)x + m = 0 có hai nghiệm phân biệt cùng dấu dương

Bài 9: Tìm m để phương trình {x^2} - 2\left( {m + 1} \right)x + m + 4 = 0 có hai nghiệm phân biệt cùng dấu dương

Bài 10: Cho phương trình {x^2} + \left( {m + 2} \right)x + m = 0. Tìm m để phương trình có hai nghiệm phân biệt cùng dấu. Khi đó hai nghiệm mang dấu gì?

Trang Tài Liệu xin giới thiệu tới các em bài Tính m để phương trình bậc hai có hai nghiệm trái dấu. Hy vọng với tài liệu học tập này các em sẽ nắm chắc kiến thức cũng như nâng cao kỹ năng giải bài toán lớp 9. Qua đó chuẩn bị tốt cho các bài thi học kì và thi vào lớp 10 sắp tới. Chúc các em học tốt.