Docly

Chuyên Đề Toán Chia Hết Lớp 8 Của Số Nguyên Bồi Dưỡng Học Sinh Giỏi

Có thể bạn quan tâm

Chuyên Đề Toán Chia Hết Lớp 8 Của Số Nguyên Bồi Dưỡng Học Sinh Giỏi là tài liệu học tập được Trang Tài Liệu biên soạn và sưu tầm từ những nguồn dữ liệu mới nhất hiện nay. Tài liệu này sẽ giúp các em luyện tập, củng cố kiến thức từ đó nâng cao điểm số cho môn học. Ngoài ra, cũng giúp các thầy cô giáo có nguồn tài nguyên phong phú để giảng dạy.

Dưới đây là bản đọc trực tuyến giúp thầy cô và các em học sinh có thể nghiên cứu Online hoặc bạn có thể tải miễn phí với phiên bản word để dễ dàng in ấn cũng như học tập Offline.

CHUYÊN ĐỀ - CÁC BÀI TOÁN VỀ SỰ CHIA HẾT CỦA SỐ NGUYÊN

I. Dạng 1: Chứng minh quan hệ chia hết

1. Kiến thức:

* Để chứng minh A(n) chia hết cho một số m ta phân tích A(n) thành nhân tử có một nhân tử làm hoặc bội của m, nếu m là hợp số thì ta lại phân tích nó thành nhân tử có các đoi một nguyên tố cùng nhau, rồi chứng minh A(n) chia hết cho các số đó

* Chú ý:

+ Với k số nguyên liên tiếp bao giờ củng tồn tại một bội của k

+ Khi chứng minh A(n) chia hết cho m ta xét mọi trường hợp về số dư khi chia A(n) cho m

+ Với mọi số nguyên a, b và số tự nhiên n thì:




2. Bài tập:


2. Các bài toán

Bài 1: chứng minh rằng

a) 251 - 1 chia hết cho 7 b) 270 + 370 chia hết cho 13

c) 1719 + 1917 chi hết cho 18 d) 3663 - 1 chia hết cho 7 nhưng không chia hết cho 37

e) 24n -1 chia hết cho 15 với nÎ N

Giải

a) 251 - 1 = (23)17 - 1 23 - 1 = 7

b) 270 + 370 (22)35 + (32)35 = 435 + 935 4 + 9 = 13

c) 1719 + 1917 = (1719 + 1) + (1917 - 1)

1719 + 1 17 + 1 = 18 và 1917 - 1 19 - 1 = 18 nên (1719 + 1) + (1917 - 1)

hay 1719 + 1917 18

d) 3663 - 1 36 - 1 = 35 7

3663 - 1 = (3663 + 1) - 2 chi cho 37 dư - 2

e) 2 4n - 1 = (24) n - 1 24 - 1 = 15

Bài 2: chứng minh rằng

a) n5 - n chia hết cho 30 với n Î N ;

b) n4 -10n2 + 9 chia hết cho 384 với mọi n lẻ nÎ Z

c) 10n +18n -28 chia hết cho 27 với nÎ N ;

Giải:

a) n5 - n = n(n4 - 1) = n(n - 1)(n + 1)(n2 + 1) = (n - 1).n.(n + 1)(n2 + 1) chia hết cho 6 vì

(n - 1).n.(n+1) là tích của ba số tự nhiên liên tiếp nên chia hết cho 2 và 3 (*)

Mặt khác n5 - n = n(n2 - 1)(n2 + 1) = n(n2 - 1).(n2 - 4 + 5) = n(n2 - 1).(n2 - 4 ) + 5n(n2 - 1)

= (n - 2)(n - 1)n(n + 1)(n + 2) + 5n(n2 - 1)

Vì (n - 2)(n - 1)n(n + 1)(n + 2) là tích của 5 số tự nhiên liên tiếp nên chia hết cho 5

5n(n2 - 1) chia hết cho 5

Suy ra (n - 2)(n - 1)n(n + 1)(n + 2) + 5n(n2 - 1) chia hết cho 5 (**)

Từ (*) và (**) suy ra đpcm

b) Đặt A = n4 -10n2 + 9 = (n4 -n2 ) - (9n2 - 9) = (n2 - 1)(n2 - 9) = (n - 3)(n - 1)(n + 1)(n + 3)

Vì n lẻ nên đặt n = 2k + 1 (k Z) thì

A = (2k - 2).2k.(2k + 2)(2k + 4) = 16(k - 1).k.(k + 1).(k + 2) A chia hết cho 16 (1)

Và (k - 1).k.(k + 1).(k + 2) là tích của 4 số nguyên liên tiếp nên A có chứa bội của 2, 3, 4 nên A là bội của 24 hay A chia hết cho 24 (2)

Từ (1) và (2) suy ra A chia hết cho 16. 24 = 384

c) 10 n +18n -28 = ( 10 n - 9n - 1) + (27n - 27)

+ Ta có: 27n - 27 27 (1)

+ 10 n - 9n - 1 = [( + 1) - 9n - 1] = - 9n = 9( - n) 27 (2)

vì 9 9 và - n 3 do - n là một số có tổng các chữ số chia hết cho 3

Từ (1) và (2) suy ra đpcm

3. Bài 3: Chứng minh rằng với mọi số nguyên a thì

a) a3 - a chia hết cho 3

b) a7 - a chia hết cho 7

Giải

a) a3 - a = a(a2 - 1) = (a - 1) a (a + 1) là tích của ba số nguyên liên tiếp nên tồn tại một số là bội của 3 nên (a - 1) a (a + 1) chia hết cho 3

b) ) a7 - a = a(a6 - 1) = a(a2 - 1)(a2 + a + 1)(a2 - a + 1)

Nếu a = 7k (k Z) thì a chia hết cho 7

Nếu a = 7k + 1 (k Z) thì a2 - 1 = 49k2 + 14k chia hết cho 7

Nếu a = 7k + 2 (k Z) thì a2 + a + 1 = 49k2 + 35k + 7 chia hết cho 7

Nếu a = 7k + 3 (k Z) thì a2 - a + 1 = 49k2 + 35k + 7 chia hết cho 7

Trong trường hợp nào củng có một thừa số chia hết cho 7

Vậy: a7 - a chia hết cho 7

Bài 4: Chứng minh rằng A = 13 + 23 + 33 + ...+ 1003 chia hết cho B = 1 + 2 + 3 + ... + 100

Giải

Ta có: B = (1 + 100) + (2 + 99) + ...+ (50 + 51) = 101. 50

Để chứng minh A chia hết cho B ta chứng minh A chia hết cho 50 và 101

Ta có: A = (13 + 1003) + (23 + 993) + ... +(503 + 513)

= (1 + 100)(12 + 100 + 1002) + (2 + 99)(22 + 2. 99 + 992) + ... + (50 + 51)(502 + 50. 51 + 512) = 101(12 + 100 + 1002 + 22 + 2. 99 + 992 + ... + 502 + 50. 51 + 512) chia hết cho 101 (1)

Lại có: A = (13 + 993) + (23 + 983) + ... + (503 + 1003)

Mỗi số hạng trong ngoặc đều chia hết cho 50 nên A chia hết cho 50 (2)

Từ (1) và (2) suy ra A chia hết cho 101 và 50 nên A chi hết cho B

Bài tập về nhà

Chứng minh rằng:

a) a5 – a chia hết cho 5

b) n3 + 6n2 + 8n chia hết cho 48 với mọi n chẵn

c) Cho a l à số nguyên tố lớn hơn 3. Cmr a2 – 1 chia hết cho 24

d) Nếu a + b + c chia hết cho 6 thì a3 + b3 + c3 chia hết cho 6

e) 20092010 không chia hết cho 2010

f) n2 + 7n + 22 không chia hết cho 9

II. Dạng 2: Tìm số dư của một phép chia

Bài 1:

Tìm số dư khi chia 2100

a)cho 9, b) cho 25, c) cho 125

Giải

a) Luỹ thừa của 2 sát với bội của 9 là 23 = 8 = 9 - 1

Ta có : 2100 = 2. (23)33 = 2.(9 - 1)33 = 2.[B(9) - 1] = B(9) - 2 = B(9) + 7

Vậy: 2100 chia cho 9 thì dư 7

b) Tương tự ta có: 2100 = (210)10 = 102410 = [B(25) - 1]10 = B(25) + 1

Vậy: 2100 chia chop 25 thì dư 1

c)Sử dụng công thức Niutơn:

2100 = (5 - 1)50 = (550 - 5. 549 + … + . 52 - 50 . 5 ) + 1

Không kể phần hệ số của khai triển Niutơn thì 48 số hạng đầu đã chứa thừa số 5 với số mũ lớn hơn hoặc bằng 3 nên đều chia hết cho 53 = 125, hai số hạng tiếp theo: . 52 - 50.5 cũng chia hết cho 125 , số hạng cuối cùng là 1

Vậy: 2100 = B(125) + 1 nên chia cho 125 thì dư 1

Bài 2:

Viết số 19951995 thành tổng của các số tự nhiên . Tổng các lập phương đó chia cho 6 thì dư bao nhiêu?

Giải

Đặt 19951995 = a = a1 + a2 + …+ an.

Gọi = + a - a

= (a1 3 - a1) + (a2 3 - a2) + …+ (an 3 - an) + a

Mỗi dấu ngoặc đều chia hết cho 6 vì mỗi dấu ngoặc là tích của ba số tự nhiên liên tiếp. Chỉ cần tìm số dư khi chia a cho 6

1995 là số lẻ chia hết cho 3, nên a củng là số lẻ chia hết cho 3, do đó chia cho 6 dư 3

Bài 3: Tìm ba chữ số tận cùng của 2100 viết trong hệ thập phân

giải

Tìm 3 chữ số tận cùng là tìm số dư của phép chia 2100 cho 1000

Trước hết ta tìm số dư của phép chia 2100 cho 125

Vận dụng bài 1 ta có 2100 = B(125) + 1 mà 2100 là số chẵn nên 3 chữ số tận cùng của nó chỉ có thể là 126, 376, 626 hoặc 876

Hiển nhiên 2100 chia hết cho 8 vì 2100 = 1625 chi hết cho 8 nên ba chữ số tận cùng của nó chia hết cho 8

trong các số 126, 376, 626 hoặc 876 chỉ có 376 chia hết cho 8

Vậy: 2100 viết trong hệ thập phân có ba chữ số tận cùng là 376

Tổng quát: Nếu n là số chẵn không chia hết cho 5 thì 3 chữ số tận cùng của nó là 376

Bài 4: Tìm số dư trong phép chia các số sau cho 7

a) 2222 + 5555 b)31993

c) 19921993 + 19941995 d)

Giải

a) ta có: 2222 + 5555 = (21 + 1)22 + (56 – 1)55 = (BS 7 +1)22 + (BS 7 – 1)55

= BS 7 + 1 + BS 7 - 1 = BS 7 nên 2222 + 5555 chia 7 dư 0

b) Luỹ thừa của 3 sát với bội của 7 là 33 = BS 7 – 1

Ta thấy 1993 = BS 6 + 1 = 6k + 1, do đó:

31993 = 3 6k + 1 = 3.(33)2k = 3(BS 7 – 1)2k = 3(BS 7 + 1) = BS 7 + 3

c) Ta thấy 1995 chia hết cho 7, do đó:

19921993 + 19941995 = (BS 7 – 3)1993 + (BS 7 – 1)1995 = BS 7 – 31993 + BS 7 – 1

Theo câu b ta có 31993 = BS 7 + 3 nên

19921993 + 19941995 = BS 7 – (BS 7 + 3) – 1 = BS 7 – 4 nên chia cho 7 thì dư 3

d) = 32860 = 33k + 1 = 3.33k = 3(BS 7 – 1) = BS 7 – 3 nên chia cho 7 thì dư 4

Bài tập về nhà

Tìm số d ư khi:

a) 21994 cho 7

b) 31998 + 51998 cho 13

c) A = 13 + 23 + 33 + ...+ 993 chia cho B = 1 + 2 + 3 + ... + 99

III. Dạng 3: Tìm điều kiện để xảy ra quan hệ chia hết

Bài 1: Tìm n Z để giá trị của biểu thức A = n3 + 2n2 - 3n + 2 chia hết cho giá trị của biểu thức B = n2 - n

Giải

Chia A cho B ta có: n3 + 2n2 - 3n + 2 = (n + 3)(n2 - n) + 2

Để A chia hết cho B thì 2 phải chia hết cho n2 - n = n(n - 1) do đó 2 chia hết cho n, ta có:

n

1

- 1

2

- 2

n - 1

0

- 2

1

- 3

n(n - 1)

0

2

2

6


loại



loại


Vậy: Để giá trị của biểu thức A = n3 + 2n2 - 3n + 2 chia hết cho giá trị của biểu thức

B = n2 - n thì n

Bài 2:

a) Tìm n N để n5 + 1 chia hết cho n3 + 1

b) Giải bài toán trên nếu n Z

Giải

Ta có: n5 + 1 n3 + 1 n2(n3 + 1) - (n2 - 1) n3 + 1 (n + 1)(n - 1) n3 + 1

(n + 1)(n - 1) (n + 1)(n2 - n + 1) n - 1 n2 - n + 1 (Vì n + 1 0)

a) Nếu n = 1 thì 0 1

Nếu n > 1 thì n - 1 < n(n - 1) + 1 < n2 - n + 1 nên không thể xẩy ra n - 1 n2 - n + 1

Vậy giá trụ của n tìm được là n = 1

b) n - 1 n2 - n + 1 n(n - 1) n2 - n + 1 (n2 - n + 1 ) - 1 n2 - n + 1

1 n2 - n + 1. Có hai trường hợp xẩy ra:

+ n2 - n + 1 = 1 n(n - 1) = 0 (Tm đề bài)

+ n2 - n + 1 = -1 n2 - n + 2 = 0 (Vô nghiệm)

Bài 3: Tìm số nguyên n sao cho:

a) n2 + 2n - 4 11 b) 2n3 + n2 + 7n + 1 2n - 1

c) n4 - 2n3 + 2n2 - 2n + 1 n4 - 1 d) n3 - n2 + 2n + 7 n2 + 1

Giải

a) Tách n2 + 2n - 4 thành tổng hai hạng tử trong đó có một hạng tử là B(11)

n2 + 2n - 4 11 (n2 - 2n - 15) + 11 11 (n - 3)(n + 5) + 11 11

(n - 3)(n + 5) 11

b) 2n3 + n2 + 7n + 1 = (n2 + n + 4) (2n - 1) + 5

Để 2n3 + n2 + 7n + 1 2n - 1 thì 5 2n - 1 hay 2n - 1 là Ư(5)

Vậy: n thì 2n3 + n2 + 7n + 1 2n - 1

c) n4 - 2n3 + 2n2 - 2n + 1 n4 - 1

Đặt A = n4 - 2n3 + 2n2 - 2n + 1 = (n4 - n3) - (n3 - n2) + (n2 - n) - (n - 1)

= n3(n - 1) - n2(n - 1) + n(n - 1) - (n - 1) = (n - 1) (n3 - n2 + n - 1) = (n - 1)2(n2 + 1)

B = n4 - 1 = (n - 1)(n + 1)(n2 + 1)

A chia hết cho b nên n 1 A chia hết cho B n - 1 n + 1 (n + 1) - 2 n + 1

2 n + 1

Vậy: n thì n4 - 2n3 + 2n2 - 2n + 1 n4 - 1

d) Chia n3 - n2 + 2n + 7 cho n2 + 1 được thương là n - 1, dư n + 8

Để n3 - n2 + 2n + 7 n2 + 1 thì n + 8 n2 + 1 (n + 8)(n - 8) n2 + 1 65 n2 + 1

Lần lượt cho n2 + 1 bằng 1; 5; 13; 65 ta được n bằng 0; 2; 8

Thử lại ta có n = 0; n = 2; n = 8 (T/m)

Vậy: n3 - n2 + 2n + 7 n2 + 1 khi n = 0, n = 8

Bài tập về nhà:

Tìm số nguyên n để:

a) n3 – 2 chia hết cho n – 2

b) n3 – 3n2 – 3n – 1 chia hết cho n2 + n + 1

c)5n – 2n chia hết cho 63

IV. Dạng 4: Tồn tại hay không tồn tại sự chia hết

Bài 1: Tìm n N sao cho 2n – 1 chia hết cho 7

Giải

Nếu n = 3k ( k N) thì 2n – 1 = 23k – 1 = 8k - 1 chia hết cho 7

Nếu n = 3k + 1 ( k N) thì 2n – 1 = 23k + 1 – 1 = 2(23k – 1) + 1 = BS 7 + 1

Nếu n = 3k + 2 ( k N) thì 2n – 1 = 23k + 2 – 1 = 4(23k – 1) + 3 = BS 7 + 3

V ậy: 2n – 1 chia hết cho 7 khi n = BS 3

Bài 2: Tìm n N để:

a) 3n – 1 chia hết cho 8

b) A = 32n + 3 + 24n + 1 chia hết cho 25

c) 5n – 2n chia hết cho 9

Giải

a) Khi n = 2k (k N) thì 3n – 1 = 32k – 1 = 9k – 1 chia hết cho 9 – 1 = 8

Khi n = 2k + 1 (k N) thì 3n – 1 = 32k + 1 – 1 = 3. (9k – 1 ) + 2 = BS 8 + 2

Vậy : 3n – 1 chia hết cho 8 khi n = 2k (k N)

b) A = 32n + 3 + 24n + 1 = 27 . 32n + 2.24n = (25 + 2) 32n + 2.24n = 25. 32n + 2.32n + 2.24n

= BS 25 + 2(9n + 16n)

Nếu n = 2k +1(k N) thì 9n + 16n = 92k + 1 + 162k + 1 chia hết cho 9 + 16 = 25

Nếu n = 2k (k N) thì 9n có chữ số tận cùng bằng 1 , còn 16n có chữ số tận cùng bằng 6

suy ra 2((9n + 16n) có chữ số tận cùng bằng 4 nên A không chia hết cho 5 nên không chia hết cho 25

c) Nếu n = 3k (k N) thì 5n – 2n = 53k – 23k chia hết cho 53 – 23 = 117 nên chia hết cho 9

Nếu n = 3k + 1 thì 5n – 2n = 5.53k – 2.23k = 5(53k – 23k) + 3. 23k = BS 9 + 3. 8k

= BS 9 + 3(BS 9 – 1)k = BS 9 + BS 9 + 3

Tương tự: nếu n = 3k + 2 thì 5n – 2n không chia hết cho 9

Chuyên đề Toán “Chia Hết” là một phần quan trọng trong chương trình bồi dưỡng học sinh giỏi lớp 8, tập trung vào khái niệm về chia hết trong số nguyên. Bằng cách nắm vững chuyên đề này, học sinh có thể áp dụng linh hoạt và thành thạo trong việc giải các bài toán liên quan đến chia hết và ứng dụng trong thực tế.

Chuyên đề này bao gồm các nội dung sau:

  1. Khái niệm chia hết: Giúp học sinh hiểu rõ khái niệm chia hết, khái quát về định nghĩa chia hết và các tính chất quan trọng liên quan.
  2. Các quy tắc chia hết: Cung cấp cho học sinh những quy tắc cơ bản và quan trọng trong việc kiểm tra xem một số có chia hết cho một số khác hay không, bao gồm quy tắc chia hết cho 2, 3, 5, 9, 10 và các quy tắc kết hợp.
  3. Ứng dụng chia hết: Tập trung vào việc áp dụng kiến thức về chia hết để giải các bài toán thực tế, bao gồm bài toán về ước số, bội số, phân tích thành thừa số nguyên tố và tìm các số chia hết chung lớn nhất, bội số chung nhỏ nhất.
  4. Các bài tập và ví dụ: Cung cấp cho học sinh nhiều bài tập và ví dụ thực hành để rèn kỹ năng giải quyết các bài toán chia hết.

Chuyên đề Toán “Chia Hết” lớp 8 của số nguyên trong chương trình bồi dưỡng học sinh giỏi mang tính ứng dụng cao và giúp học sinh phát triển tư duy logic, khả năng xử lý bài toán và mở rộng kiến thức toán học của mình. Hy vọng rằng qua chuyên đề này, học sinh sẽ trở nên thành thạo và tự tin hơn trong việc giải quyết các bài toán toán học.

Ngoài Chuyên Đề Toán Chia Hết Lớp 8 Của Số Nguyên Bồi Dưỡng Học Sinh Giỏi thì các tài liệu học tập trong chương trình 8 sẽ được cập nhật liên tục và nhanh nhất có thể sau khi kỳ thi diễn ra trên Danh mục Tài Liệu Học Tập nhằm giúp các bạn đọc thuận tiện trong việc nghiên cứu tài liệu. Quý thày cô và các bạn đọc có thể chia sẻ thêm những tài liệu học tập hữu ích đến địa chỉ email của chúng tôi, nhằm xây dựng nên kho đề thi phong phú, đa dạng cho các em học sinh tham khảo và rèn luyện.

Xem thêm

Chuyên Đề Văn Bản Nhật Dụng Lớp 8

Xem thêm