Docly

Đề Thi Thử THPT Quốc Gia 2022 Môn Toán Trường Chuyên Lam Sơn (Lần 2)

Đề Thi Thử THPT Quốc Gia 2022 Môn Toán Trường Chuyên Lam Sơn (Lần 2) – Đề Thi Thử Toán 2023 được Trang Tài Liệu sưu tầm với các thông tin mới nhất hiện nay. Đề thi này sẽ giúp các em học sinh ôn tập, củng cố kiến thức, rèn luyện kĩ năng làm bài. Cũng như hỗ trợ thầy cô trong quá trình giảng dạy. Hy vọng những tài liệu này sẽ giúp các em trong quá trình ôn luyện và đạt kết quả cao trong bài thi sắp tới.

>>> Mọi người cũng quan tâm:

Đề Thi Thử THPT Quốc Gia 2022 Môn Lý Nguyễn Trung Thiên (Lần 1)
Đề Thi Thử Giáo Dục Công Dân Trường Chuyên Lam Sơn (Lần 1)
Đề Thi Thử THPT Quốc Gia 2022 Môn Toán (Đề 9) Có Lời Giải Chi Tiết
Đề Thi Thử THPT Quốc Gia 2022 Môn Lý Bộ GD&ĐT Có Đáp Án
Đề Thi Thử THPT Quốc Gia Môn Sử Trường Hàn Thuyên Lần 1

Dưới đây là bản đọc trực tuyến giúp thầy cô và các em học sinh có thể nghiên cứu Online hoặc bạn có thể tải miễn phí với phiên bản word để dễ dàng in ấn cũng như học tập Offline

SỞ GD & ĐT THANH HÓA
TRƯỜNG THPT CHUYÊN LAM SƠN


ĐỀ THI CHÍNH THỨC

( Đề thi có 06 trang)

KỲ THI KSCL CÁC MÔN THI TN THPT NĂM 2022 - LẦN 2

Môn thi: Toán

Ngày thi: 03/04/2022

Thời gian làm bài: 90 phút, không kể thời gian phát đề


Họ và tên: ............................................................................

Số báo danh: .............

Mã đề Gốc


Câu 1. Có bao nhiêu số tự nhiên có 4 chữ số khác nhau được lập từ tập

A. . B. . C. . D. .

Câu 2. Cho cấp số nhân với . Công bội của cấp số nhân đã cho bằng

A. . B. . C. . D. .

Câu 3. Hàm số nào sau đây đồng biến trên ?

A. . B. . C. . D. .

Câu 4. Cho hàm số có bảng biến thiên như sau

Hàm số đạt cực đại tại điểm

A. . B. . C. . D. .

Câu 5. Hàm số có mấy điểm cực trị?

A. . B. . C. . D. .

Câu 6. Đường thẳng nào sau đây là tiệm cận đứng của đồ thị hàm số ?

A. . B. . C. . D. .

Câu 7. Trong các hàm số sau, hàm số nào có đồ thị như hình vẽ dưới đây?

A. . B. . C. . D. .

Câu 8. Cho hàm số bậc ba có đồ thị như hình vẽ dưới đây.


Số nghiệm của phương trình là:

A. 3. B. 0. C. 2. D. 1.

Câu 9. Tập xác định của hàm số

A. . B. . C. . D. .

Câu 10. Hàm số có đạo hàm là

A. . B. . C. . D. .

Câu 11. Tập nghiệm của phương trình

A. . B. . C. . D. .

Câu 12. Trên khoảng , họ nguyên hàm của hàm số

A. . B. . C. . D. .

Câu 13. Trong các mệnh đề sau, mệnh đề nào sai?

A. . B. .

C. . D. .

Câu 14. Tích phân bằng

A. . B. . C. . D. .

Câu 15. Xét , nếu đặt thì bằng

A. . B. . C. . D. .

Câu 16. Cho số phức . Tìm phần ảo của số phức liên hợp của .

A. . B. . C. . D. .

Câu 17. Cho hai số phức , . Tích bằng

A. . B. . C. . D. .

Câu 18. Xét hai số phức , tùy ý. Phát biểu nào sau đây sai?

A. . B. . C. . D. .

Câu 19. Một khối lăng trụ có thể tích bằng , diện tích mặt đáy bằng . Chiều cao của khối lăng trụ đó bằng

A. . B. . C. . D. .

Câu 20. Cho khối chóp có đáy là tam giác đều cạnh , , (tham khảo hình vẽ bên dưới).

Thể tích của khối chóp đã cho bằng:

A. . B. . C. . D. .

Câu 21. Cho hình nón có bán kính đáy và độ dài đường sinh . Tính diện tích xung quanh của hình nón đã cho.

A. . B. . C. . D. .

Câu 22. Tính thể tích của khối trụ biết bán kính đáy của khối trụ đó bằng chiều cao bằng

A. . B. . C. . D. .

Câu 23. Trong không gian với hệ trục tọa độ , hình chiếu vuông góc của điểm   trên mặt phẳng 

A. . B. . C. . D. .

Câu 24. Trong không gian với hệ trục tọa độ , cho điểm và mặt phẳng . Đường thẳng đi qua và vuông góc với mặt phẳng có phương trình là

A. B.

C. D.

Câu 25. Trong không gian với hệ trục tọa độ , mặt cầu tâm và bán kính bằng có phương trình là

A. . B. .

C. . D. .

Câu 26. Một em bé có bộ 7 thẻ chữ, trên mỗi thẻ có ghi một chữ cái, trong đó có 2 thẻ chữ T giống nhau, một thẻ chữ H, một thẻ chữ P, một thẻ chữ C, một thẻ chữ L và một thẻ chữ S. Em bé xếp theo hàng ngang ngẫu nhiên 7 thẻ đó. Xác suất em bé xếp được dãy theo thứ tự THPTCLS là

A. . B. . C. . D. .

Câu 27. Cho hình chóp có đáy là tam giác vuông tại , , ; vuông góc với mặt phẳng đáy và . Góc giữa đường thẳng và mặt phẳng đáy bằng

A. . B. . C. . D. .

Câu 28. Cho hàm số bậc bốn . Hàm số có đồ thị như hình vẽ như sau

Hàm số nghịch biến trên khoảng nào trong các khoảng sau?

A. . B. . C. . D. .

Câu 29. Khi nuôi tôm trong một hồ tự nhiên, một nhà khoa học đã thống kê được rằng: nếu trên mỗi mét vuông mặt hồ thả con tôm giống thì cuối vụ mỗi con tôm có cân nặng trung bình là (gam). Hỏi nên thả bao nhiêu con tôm giống trên mỗi mét vuông mặt hồ tự nhiên đó để cuối vụ thu hoạch được nhiều tôm nhất.

A. 6. B. 7. C. 8. D. 9.

Câu 30. Xét tất cả các số dương thỏa mãn . Tính giá trị của .

A. . B. . C. . D. .

Câu 31. Tích tất cả các nghiệm của phương trình bằng

A. . B. . C. . D. .

Câu 32. Số nghiệm nguyên của bất phương trình

A. . B. . C. . D. .

Câu 33. Cho hàm số liên tục trên đoạn , có đạo hàm thỏa mãn . Tính .

A. . B. . C. . D. .

Câu 34. Tìm số phức thỏa mãn .

A. . B. . C. . D. .

Câu 35. Trong không gian với hệ trục tọa độ , cho đường thẳng . Gọi là giao điểm của với mặt phẳng . Tọa độ điểm

A. . B. . C. . D. .

Câu 36. Trong không gian với hệ trục tọa độ , là mặt phẳng đi qua điểm và cắt các tia lần lượt tại (khác gốc tọa độ ) sao cho là trực tâm tam giác . Biết mặt phẳng có phương trình . Tính tổng .

A. 8. B. 14. C. 6. D. 11.

Câu 37. Trong không gian với hệ trục tọa độ , cho điểm và mặt phẳng . Mặt cầu tâm và tiếp xúc với mặt phẳng có phương trình là

A. . B. .

C. . D. .

Câu 38. Cho hình lăng trụ đứng có đáy là tam giác đều cạnh . Cạnh . Khoảng cách giữa hai đường thẳng là:

A. . B. . C. . D. .

Câu 39. Gọi là tập hợp tất cả các giá trị thực của tham số để đồ thị của hàm số có ba điểm cực trị, đồng thời ba điểm cực trị đó cùng với gốc tọa độ tạo thành một tứ giác nội tiếp. Tìm tích các phần tử của .

A. . B. . C. . D. .

Câu 40. Gọi là tập nghiệm của bất phương trình . Biết thuộc , tính .

A. . B. . C. . D. .

Câu 41. Cho hàm số liên tục trên đoạn thỏa mãn:

, .

Khi đó bằng

A. 2. B. 4. C. . D. .

Câu 42. Có bao nhiêu số phức thỏa mãn ?

A. . B. . C. . D. .

Câu 43. Cho hình chóp có đáy là tam giác đều cạnh bằng , tam giác cân tại và thuộc mặt phẳng vuông góc với mặt phẳng , góc giữa hai mặt phẳng bằng . Gọi là trung điểm của đoạn . Trong các mệnh đề sau, mệnh đề nào đúng:

A. Thể tích khối chóp bằng . B. Thể tích khối chóp bằng .

C. Thể tích khối chóp bằng . D. Không tồn tại hình chóp đã cho.

Câu 44. Một cái bình thủy tinh có phần không gian bên trong là một hình nón có đỉnh hướng xuống dưới theo chiều thẳng đứng. Rót nước vào bình cho đến khi phần không gian trống trong bình có chiều cao 2 cm. Sau đó đậy kín miệng bình bởi một cái nắp phẳng và lật ngược bình để đỉnh hướng lên trên theo chiều thẳng đứng, khi đó mực nước cao cách đỉnh của nón 8 cm (hình vẽ minh họa bên dưới).

Biết chiều cao của nón là cm. Tính .

A. . B. . C. . D. .

Câu 45. Trong không gian với hệ trục tọa độ cho điểm , điểm và đường thẳng . là điểm thuộc đường thẳng sao cho diện tích tam giác nhỏ nhất. Khi đó có giá trị bằng:

A. . B. . C. . D. .

Câu 46. Cho hàm số , với là tham số. Có bao nhiêu giá trị nguyên của thuộc đoạn để hàm số có số điểm cực trị nhiều nhất?

A. 2021. B. 2022. C. 4040. D. 2023

Câu 47. Có bao nhiêu số nguyên dương để phương trình nghiệm phân biệt không lớn hơn 5.

A. 26. B. 27. C. 29. D. 28.

Câu 48. Cho hàm số với đồ thị là Parabol đỉnh có tung độ bằng và hàm số bậc ba . Đồ thị hai hàm số đó cắt nhau tại ba điểm phân biệt có hoành độ thoả mãn (hình vẽ).

Diện tích miền tô đậm gần số nào nhất trong các số sau đây?

A. 5,7. B. 5,9. C. 6,1. D. 6,3.

Câu 49. Cho lần lượt là các điểm biểu diễn số phức , , thỏa mãn điều kiện , , . Khi không thẳng hàng, giá trị nhỏ nhất của nửa chu vi của tam giác

A. . B. . C. . D. .

Câu 50. Trong không gian với hệ trục tọa độ , cho đường thẳng , , có phương trình , , . là mặt cầu tâm bán kính tiếp xúc với đường thẳng đó. Giá trị nhỏ nhất của gần số nào nhất trong các số sau:

A. 2,1. B. 2,2. C. 2,3. D. 2,4.


SỞ GD & ĐT THANH HÓA

TRƯỜNG THPT CHUYÊN LAM SƠN


ĐÁP ÁN ĐỀ GỐC


KỲ THI KSCL CÁC MÔN THI TN THPT NĂM 2022 - LẦN 2

Môn thi: Toán

Ngày thi: 03/04/2022

BẢNG ĐÁP ÁN

1.C

2.A

3.B

4.D

5.C

6.D

7.C

8.A

9.A

10.A

11.D

12.B

13.D

14.C

15.A

16.C

17.D

18.D

19.C

20.D

21.B

22.A

23.A

24.B

25.C

26.C

27.C

28.A

29.A

30.A

31.A

32.C

33.A

34.C

35.D

36.C

37.C

38.C

39.C

40.D

41.B

42.C

43.C

44.C

45.B

46.A

47.D

48.A

49.B

50.A



ĐÁP ÁN CHI TIẾT

Câu 1. Có bao nhiêu số tự nhiên có 4 chữ số khác nhau được lập từ tập

A. . B. . C. . D. .

Lời giải

Số các số tự nhiên có 4 chữ số khác nhau được lập từ .

Câu 2. Cho cấp số nhân với . Công bội của cấp số nhân đã cho bằng

A. . B. . C. . D. .

Lời giải

Ta có .

Câu 3. Hàm số nào sau đây đồng biến trên ?

A. . B. . C. . D. .

Lời giải

Nhận xét .

Do đó hàm số đồng biến trên .

Câu 4. Cho hàm số có bảng biến thiên như sau

Hàm số đạt cực đại tại điểm

A. . B. . C. . D. .

Lời giải

Qua bảng biến thiên ta có hàm số đạt cực đại tại điểm .

Câu 5. Hàm số có mấy điểm cực trị?

A. . B. . C. . D. .

Lời giải

Hàm số , suy ra hàm số điểm cực trị.

Câu 6. Đường thẳng nào sau đây là tiệm cận đứng của đồ thị hàm số ?

A. . B. . C. . D. .

Lời giải

Ta có: nên đồ thi có TCĐ: .

Câu 7. Trong các hàm số sau, hàm số nào có đồ thị như hình vẽ dưới đây?

A. . B. . C. . D. .

Lời giải

Dễ nhận thấy dạng đồ thị cho trong bài là của hàm số dạng .

Câu 8. Cho hàm số bậc ba có đồ thị như hình vẽ dưới đây. Số nghiệm của phương trình là:

A. 3. B. 0. C. 2. D. 1.

Lời giải

Kẻ đường thẳng ta thấy đường thẳng cắt đồ thị tại 3 điểm phân biệt. Như vậy số nghiệm của phương trình là 3.

Câu 9. Tập xác định của hàm số

A. . B. . C. . D. .

Lời giải

Điều kiện xác định: .

Vậy tập xác định của hàm số là: .

Câu 10. Hàm số có đạo hàm là

A. . B. . C. . D. .

Lời giải

Áp dụng công thức .

Ta có .

Câu 11. Tập nghiệm của phương trình

A. . B. . C. . D. .

Lời giải

Ta có phương trình đã cho

Phương trình trên vô nghiệm.

Câu 12. Trên khoảng , họ nguyên hàm của hàm số

A. . B. . C. . D. .

Lời giải

Áp dụng công thức: , ta có .

Câu 13. Trong các mệnh đề sau, mệnh đề nào sai?

A. . B. .

C. . D. .

Lời giải

Ta có nên phương án sai.

Câu 14. Tích phân bằng

A. . B. . C. . D. .

Lời giải

Ta có .

Câu 15. Xét , nếu đặt thì bằng

A. . B. . C. . D. .

Lời giải

Xét

Đặt . Đổi cận: ; . Khi đó

Câu 16. Cho số phức . Tìm phần ảo của số phức liên hợp của .

A. . B. . C. . D. .

Lời giải

Số phức liên hợp của .

Vậy phần ảo của số phức liên hợp của .

Câu 17. Cho hai số phức , . Tích bằng

A. . B. . C. . D. .

Lời giải

Ta có .

Câu 18. Xét hai số phức , tùy ý. Phát biểu nào sau đây sai?

A. . B. . C. . D. .

Lời giải

Giả sử , , ta có

Vậy về tổng quát .

Câu 19. Một khối lăng trụ có thể tích bằng , diện tích mặt đáy bằng . Chiều cao của khối lăng trụ đó bằng

A. . B. . C. . D. .

Lời giải

Gọi là chiều cao của khối lăng trụ.

Ta có thể tích khối lăng trụ là .

Câu 20. Cho khối chóp có đáy là tam giác đều cạnh , , (tham khảo hình vẽ bên dưới).

Thể tích của khối chóp đã cho bằng:

A. . B. . C. . D. .

Lời giải

nên ta có là đường cao của hình chóp hay .

Do đáy của hình chóp là tam giác đều cạnh nên ta có: .

Khi đó thể tích của khối chóp đã cho là: (đvtt).

Câu 21. Cho hình nón có bán kính đáy và độ dài đường sinh . Tính diện tích xung quanh của hình nón đã cho.

A. . B. . C. . D. .

Lời giải

Ta có . Nên .

Câu 22. Tính thể tích của khối trụ biết bán kính đáy của khối trụ đó bằng chiều cao bằng

A. . B. . C. . D. .

Lời giải

Thể tích khối trụ là

Câu 23. Trong không gian với hệ trục tọa độ , hình chiếu vuông góc của điểm   trên mặt phẳng 

A. . B. . C. . D. .

Lời giải

Hình chiếu của điểm lên mặt phẳng

Nên là hình chiếu của điểm   trên mặt phẳng  .

Câu 24. Trong không gian với hệ trục tọa độ , cho điểm và mặt phẳng . Đường thẳng đi qua và vuông góc với mặt phẳng có phương trình là

A. B.

C. D.

Lời giải

Gọi là véc tơ chỉ phương của đường thẳng thỏa mãn yêu cầu bài toán.

Ta có véc tơ pháp tuyến của mặt phẳng : .

Câu 25. Trong không gian với hệ trục tọa độ , mặt cầu tâm và bán kính bằng có phương trình là

A. . B. .

C. . D. .

Lời giải

Phương trình mặt cầu có tâm và bán kính có dạng:

Mà tâm và bán kính nên

Câu 26. Một em bé có bộ 7 thẻ chữ, trên mỗi thẻ có ghi một chữ cái, trong đó có 2 thẻ chữ T giống nhau, một thẻ chữ H, một thẻ chữ P, một thẻ chữ C, một thẻ chữ L và một thẻ chữ S. Em bé xếp theo hàng ngang ngẫu nhiên 7 thẻ đó. Xác suất em bé xếp được dãy theo thứ tự THPTCLS là

A. . B. . C. . D. .

Lời giải

Hoán vị 7 chữ cái này ta được 1 dãy 7 chữ cái, tuy nhiên trong đó có 2 chữ T giống nhau nên khi hoán vị 2 chữ T này cho nhau không tạo dãy mới.

Vì vậy sẽ có: dãy khác nhau.

Xác suất để tạo thành dãy THPTCLS là .

Câu 27. Cho hình chóp có đáy là tam giác vuông tại , , ; vuông góc với mặt phẳng đáy và . Góc giữa đường thẳng và mặt phẳng đáy bằng

A. . B. . C. . D. .

Lời giải

Ta có nên góc giữa bằng .

.

Suy ra .

Câu 28. Cho hàm số bậc bốn . Hàm số có đồ thị như hình vẽ sau

Hàm số nghịch biến trên khoảng nào trong các khoảng sau?

A. . B. . C. . D. .

Lời giải

Dựa vào đồ thị hàm số ta có

.

Do đó hàm số đồng biến trên các khoảng , nghịch biến trên các khoảng .

Vậy hàm số nghịch biến trên khoảng là đúng.

Câu 29. Khi nuôi tôm trong một hồ tự nhiên, một nhà khoa học đã thống kê được rằng: nếu trên mỗi mét vuông mặt hồ thả con tôm giống thì cuối vụ mỗi con tôm có cân nặng trung bình là (gam). Hỏi nên thả bao nhiêu con tôm giống trên mỗi mét vuông mặt hồ tự nhiên đó để cuối vụ thu hoạch được nhiều tôm nhất.

A. 6. B. 7. C. 8. D. 9.

Lời giải

Sau một vụ lượng tôm trung bình trên mỗi mặt hồ nặng

Xét hàm số trên khoảng ta có

Trên khoảng hàm số đạt GTLN tại .

Vậy nên thả 6 con tôm giống trên mỗi mét vuông mặt hồ thì cuối vụ thu hoạch được nhiều tôm nhất.

Câu 30. Xét tất cả các số dương thỏa mãn . Tính giá trị của .

A. . B. . C. . D. .

Lời giải

Ta có:

Câu 31. Tích tất cả các nghiệm của phương trình bằng

A. . B. . C. . D. .

Lời giải

Ta có: .

Vậy tích các nghiệm của phương trình là .

Câu 32. Số nghiệm nguyên của bất phương trình

A. . B. . C. . D. .

Lời giải

Bất phương trình

.

nên . Vậy bất phương trình có nghiệm nguyên.

Câu 33. Cho hàm số liên tục trên đoạn , có đạo hàm thỏa mãn . Tính .

A. . B. . C. . D. .

Lời giải

Đặt: , chọn .

Ta có:

.

Câu 34. Tìm số phức thỏa mãn .

A. . B. . C. . D. .

Lời giải

Đặt .

Theo giả thiết ta có .

Điều này tương đương với .

Từ đây ta được .

Như vậy .

Tức là .

Câu 35. Trong không gian với hệ trục tọa độ , cho đường thẳng . Gọi là giao điểm của với mặt phẳng . Tọa độ điểm

A. . B. . C. . D. .

Lời giải

Tọa độ của điểm là nghiệm của hệ:

Vậy .

Câu 36. Trong không gian với hệ trục tọa độ , là mặt phẳng đi qua điểm và cắt các tia lần lượt tại (khác gốc tọa độ ) sao cho là trực tâm tam giác . Biết mặt phẳng có phương trình . Tính tổng .

A. 8. B. 14. C. 6. D. 11.

Lời giải

Ta có tứ diện là tứ diện vuông tại , mà là trực tâm tam giác nên .

Vậy là một véc tơ pháp tuyến của mặt phẳng đi qua nên có phương trình: .

Câu 37. Trong không gian với hệ trục tọa độ , cho điểm và mặt phẳng . Mặt cầu tâm và tiếp xúc với mặt phẳng có phương trình là

A. . B. .

C. . D. .

Lời giải

Mặt cầu tâm và tiếp xúc với mặt phẳng có bán kính là

.

Vậy mặt cầu có phương trình là .

Câu 38. Cho hình lăng trụ đứng có đáy là tam giác đều cạnh . Cạnh . Khoảng cách giữa hai đường thẳng là:

A. . B. . C. . D. .

Lời giải.

Gọi là trung điểm , là trung điểm của

Khi đó

(*)

Trong mặt phẳng kẻ (1)

Do đều

là hình lăng trụ đứng

Nên (2)

Từ (1) và (2) (**)

Trong tam giác vuông tại , là đường cao:

(***)

Từ (*), (**), (***) .

Câu 39. Gọi là tập hợp tất cả các giá trị thực của tham số để đồ thị của hàm số có ba điểm cực trị, đồng thời ba điểm cực trị đó cùng với gốc tọa độ tạo thành một tứ giác nội tiếp. Tìm tích các phần tử của .

A. . B. . C. . D. .

Lời giải

Để hàm số có ba điểm cực trị thì phải có ba nghiệm phân biệt.

Ta có . , .

Ba điểm cực trị là .

Ba điểm và gốc tọa độ tạo thành tứ giác nội tiếp khi và chỉ khi , (do ) . Vậy có 2 phần tử và có tích bằng .

Câu 40. Gọi là tập nghiệm của bất phương trình . Biết thuộc , tính .

A. . B. . C. . D. .

Lời giải

Điều kiện:

Do là nghiệm của bất phương trình đã cho nên

nên bất phương trình

Vì vậy

Câu 41. Cho hàm số liên tục trên đoạn thỏa mãn:

, .

Khi đó bằng

A. 2. B. 0. C. . D. .

Lời giải

Ta có:

Lấy tích phân từ đến hai vế của ta được:

Vậy = 0.

Câu 42. Có bao nhiêu số phức thỏa mãn ?

A. . B. . C. . D. .

Lời giải

Áp dụng các tính chất ta có .

Do đó .

Gọi là điểm biểu diễn của .

Do nên thuộc đường tròn tâm , bán kính . có phương trình là .

Do nên thuộc đường elip có hai tiêu điểm là và có độ dài trục lớn là . có phương trình là .

Từ đây có là giao điểm của .

Từ hình vẽ của ta thấy chúng có giao điểm nên có số phức thỏa mãn yêu cầu.

Câu 43. Cho hình chóp có đáy là tam giác đều cạnh bằng , tam giác cân tại và thuộc mặt phẳng vuông góc với mặt phẳng , góc giữa hai mặt phẳng bằng . Gọi là trung điểm của đoạn . Trong các mệnh đề sau, mệnh đề nào đúng:

A. Thể tích khối chóp bằng . B. Thể tích khối chóp bằng .

C. Thể tích khối chóp bằng . D. Không tồn tại hình chóp đã cho.

Lời giải

Tam giác thuộc mặt phẳng vuông góc với mặt phẳng , từ đó suy ra đường cao của hình chóp

Kẻ

Nếu thì dễ thấy đều (vô lí). Vậy

khi đó cân tại

Trong vuông tại ta có

thay vào ta được . Vậy .

.

Câu 44. Một cái bình thủy tinh có phần không gian bên trong là một hình nón có đỉnh hướng xuống dưới theo chiều thẳng đứng. Rót nước vào bình cho đến khi phần không gian trống trong bình có chiều cao 2 cm. Sau đó đậy kín miệng bình bởi một cái nắp phẳng và lật ngược bình để đỉnh hướng lên trên theo chiều thẳng đứng, khi đó mực nước cao cách đỉnh của nón 8 cm (hình vẽ minh họa bên dưới).

Biết chiều cao của nón là cm. Tính .

A. . B. . C. . D. .

Lời giải

Để ý rằng có 3 hình nón đồng dạng: Phần không gian bên trong bình thủy tinh (có thể tích ), phần không chứa nước khi đặt bình có đỉnh hướng lên (có thể tích ), phần chứa nước khi đặt bình có đỉnh hướng xuống (có thể tích ). Do tỷ số đồng dạng bằng với tỷ số của chiều cao và tỷ số thể tích là lập phương tỷ số đồng dạng nên ta có . Mà nên ta có:

Vậy

Câu 45. Trong không gian với hệ trục tọa độ cho điểm , điểm và đường thẳng . là điểm thuộc đường thẳng sao cho diện tích tam giác nhỏ nhất. Khi đó có giá trị bằng:

A. . B. . C. . D. .

Lời giải

Ta có .

Gọi là hình chiếu của trên đường thẳng đi qua , ta có:

Diện tích tam giác nhỏ nhất khi và chỉ khi độ dài nhỏ nhất.

.

Đường thẳng có vecto chỉ phương . .

.

Dấu xảy ra khi , suy ra: . Vậy .

Câu 46. Cho hàm số , với là tham số. Có bao nhiêu giá trị nguyên của thuộc đoạn để hàm số có số điểm cực trị nhiều nhất?

A. 2021. B. 2022. C. 4040. D. 2023

Lời giải

Hàm số có số điểm cực trị nhiều nhất là khi và chỉ khi phương trình nghiệm phân biệt hay phương trình nghiệm phân biệt

Ta có

Suy ra nghiệm phân biệt khi và chỉ khi nghiệm phân biệt khác 1 tức là

do nguyên thuộc nên có 2021 giá trị thỏa mãn.

Câu 47. Có bao nhiêu số nguyên dương để phương trình nghiệm phân biệt không lớn hơn 5.

A. 26. B. 27. C. 29. D. 28.

Lời giải

Xét phương trình (*) điều kiện

, Đặt

Ta có hệ phương trình

Trừ (1) và (2) theo vế ta được: hay

với thì hàm số đồng biến trên tập xác định nên

Thay vào ta được hay

Rõ ràng là 1 nghiệm của phương trình (4).

Với ta có

Xét hàm số , ta có: Tập xác định

Hàm số nên

Ta có bảng biến thiên của như sau:

Suy ra do đó

Bảng biến thiên của :

Để phương trình có 2 nghiệm phân biệt không lớn hơn 5 thì phương trình

có duy nhất 1 nghiệm bé hơn hoặc bằng 5. Ta có

Dựa vào bảng biến thiên của ta có do nên có 28 giá trị thỏa mãn.

Câu 48. Cho hàm số với đồ thị là Parabol đỉnh có tung độ bằng và hàm số bậc ba . Đồ thị hai hàm số đó cắt nhau tại ba điểm phân biệt có hoành độ thoả mãn (hình vẽ).

Diện tích miền tô đậm gần số nào nhất trong các số sau đây?

A. 5,7. B. 5,9. C. 6,1. D. 6,3.

Lời giải

Dễ thấy .

Hàm số đạt cực trị tại nên

Đồ thị hàm số đi qua nên .

Phương trình hoành độ giao điểm:

Theo định lý viet ta có:

Từ , ta được . Từ đó suy ra diện tích miền tô đậm sấp sỉ 5,7.

Câu 49. Cho lần lượt là các điểm biểu diễn số phức , , thỏa mãn điều kiện , , . Khi không thẳng hàng, giá trị nhỏ nhất của nửa chu vi của tam giác

A. . B. . C. . D. .

Lời giải

Trong mặt phẳng , gọi , , lần lượt là các điểm biểu diễn số phức , , . Ta có

Tập hợp điểm biểu diễn số phức là đường thẳng .

Tập hợp điểm biểu diễn số phức là đường thẳng .

Tập hợp điểm biểu diễn số phức là đoạn .


Khi đó .

Gọi , lần lượt đối xứng với qua , . Ta có , .

Khi đó .

Ta thấy .

Theo định lí Sin:

Gọi là trung điểm của , khi đó

.

Vậy giá trị nhỏ nhất của .

Câu 50. Trong không gian với hệ trục tọa độ , cho đường thẳng , , có phương trình , , . là mặt cầu tâm bán kính tiếp xúc với đường thẳng đó. Giá trị nhỏ nhất của gần số nào nhất trong các số sau:

A. 2,1. B. 2,2. C. 2,3. D. 2,4.

Lời giải

Ta có: đi qua điểm có VTCP .

đi qua điểm có VTCP .

đi qua điểm có VTCP .

Ta có , , , , đôi một vuông góc với nhau.

, , , , đôi một chéo nhau.

Lại có: ; nên , , chứa cạnh của hình hộp chữ nhật như hình vẽ.

Vì mặt cầu tâm tiếp xúc với đường thẳng , , nên bán kính

, ta thấy

, .

, .

, .

khi đó .


Ngoài Đề Thi Thử THPT Quốc Gia 2022 Môn Toán Trường Chuyên Lam Sơn (Lần 2) – Đề Thi Thử Toán 2023 thì các đề thi trong chương trình lớp 12 sẽ được cập nhật liên tục và nhanh nhất có thể sau khi kỳ thi diễn ra trên Danh mục Kho Đề Thi nhằm giúp các bạn đọc thuận tiện trong việc tra cứu và đối chiếu đáp án. Quý thầy cô và các bạn đọc có thể chia sẻ thêm những tài liệu học tập hữu ích đến địa chỉ email của chúng tôi, nhằm xây dựng nên kho đề thi phong phú, đa dạng cho các em học sinh tham khảo và rèn luyện.

Môn Toán đóng vai trò quan trọng trong kỳ thi THPT Quốc Gia, là một trong những môn học đòi hỏi sự logic, tư duy và kỹ năng giải quyết vấn đề. Để giúp các bạn học sinh nắm vững kiến thức và rèn luyện kỹ năng làm bài trong môn Toán, chúng tôi xin trân trọng giới thiệu Đề Thi Thử THPT Quốc Gia 2022 Môn Toán Trường Chuyên Lam Sơn (Lần 2).

Bộ đề thi này được biên soạn bởi đội ngũ giáo viên có kinh nghiệm và am hiểu sâu về nội dung và yêu cầu của môn Toán. Các đề thi trong bộ đề được xây dựng cân đối và đa dạng, phản ánh đúng chương trình học và yêu cầu của kỳ thi THPT Quốc Gia. Các câu hỏi và bài tập trong đề thi được thiết kế để kiểm tra và đánh giá hiệu quả kiến thức và kỹ năng của các bạn học sinh.

Bộ đề thi cung cấp đáp án chi tiết và logic. Đáp án giúp các bạn tự kiểm tra và đánh giá kết quả của mình sau khi làm bài. Ngoài ra, lời giải chi tiết cung cấp giải thích từng bước giải quyết vấn đề, giúp các bạn học sinh hiểu rõ cách suy nghĩ và áp dụng kiến thức vào việc giải quyết các bài tập một cách chính xác và logic.

Đề Thi Thử THPT Quốc Gia 2022 Môn Toán Trường Chuyên Lam Sơn (Lần 2) là tài liệu ôn tập và rèn luyện kỹ năng làm bài thi Toán một cách hiệu quả. Chúng tôi hy vọng rằng bộ đề này sẽ giúp các bạn học sinh tự tin và thành công trong kỳ thi THPT Quốc Gia sắp tới.

>>> Bài viết có liên quan

Đề Thi Thử THPT Quốc Gia 2022 Môn Toán (Đề 8) Có Lời Giải Chi Tiết
Đề Thi Thử THPT Quốc Gia 2022 Môn Lý Trường Trần Phú Lần 1
Đề Thi Thử THPT Quốc Gia Môn Sử Trường Chuyên Vĩnh Phúc Lần 1
Đề Thi Thử THPT Quốc Gia 2022 Môn Lý Trường Trần Quốc Tuấn
Đề Thi Thử THPT Quốc Gia Môn Toán 2022 (Đề 6) Có Lời Giải Chi Tiết
Đề Thi THPT Quốc Gia 2022 Môn Lý Trường THPT Trần Phú Lần 2
Bộ Đề Trắc Nghiệm Giáo Dục Công Dân 12 Học Kì 2 Năm 2021-2022
Đề Kiểm Tra Sử 12 Học Kì 1 Sở GD&ĐT Quảng Nam 2022-2023
Đề Trắc Nghiệm Giáo Dục Công Dân 12 Học Kì 2 Sở GD&ĐT Quảng Nam 2021
Đề Thi Thử Toán THPT Quốc Gia 2022 (Đề 7) Có Lời Giải Chi Tiết