Docly

15 Đề Thi Toán 8 Cuối Học Kì 2 Có Đáp Án Và Lời Giải

15 Đề Thi Toán 8 Cuối Học Kì 2 Có Đáp Án Và Lời Giải được Trang Tài Liệu sưu tầm với các thông tin mới nhất hiện nay. Đề thi này sẽ giúp các em học sinh ôn tập, củng cố kiến thức, rèn luyện kĩ năng làm bài. Cũng như hỗ trợ thầy cô trong quá trình giảng dạy. Hy vọng những tài liệu này sẽ giúp các em trong quá trình ôn luyện và đạt kết quả cao trong bài thi sắp tới.

Trong quá trình học Toán, việc ôn tập và làm Đề Thi Toán 8 Cuối Học Kì 2 là một phần quan trọng để kiểm tra và củng cố kiến thức của học sinh. Tuy nhiên, việc tìm kiếm một bộ tài liệu đầy đủ, chất lượng và có đáp án cùng lời giải không phải lúc nào cũng dễ dàng.

Để giúp các em học sinh lớp 8 có nguồn tài liệu đáng tin cậy, chúng tôi xin giới thiệu 15 Đề Thi Toán 8 Cuối Học Kì 2 Có Đáp Án Và Lời Giải. Tại đây, các em sẽ tìm thấy các đề thi thiết kế theo cấu trúc và nội dung chương trình học, kèm theo đáp án và lời giải chi tiết. Điều này giúp các em hiểu rõ từng bài tập, áp dụng các công thức và phương pháp giải, từ đó nâng cao khả năng giải quyết các bài toán toán học.

Mỗi đề thi Đề Thi Toán 8 Cuối Học Kì 2 được kèm theo đáp án và lời giải chi tiết, giúp các em tự kiểm tra và đánh giá kết quả của mình. Đáp án và lời giải cung cấp giải thích rõ ràng cho từng bước giải quyết, giúp các em hiểu rõ cách áp dụng kiến thức và phương pháp giải quyết vấn đề.

Trang tài liệu này đã được biên soạn kỹ càng bởi các giáo viên và chuyên gia có kinh nghiệm, đảm bảo tính chính xác và phù hợp với chương trình học. Các bài tập và bài toán được lựa chọn kỹ càng để thử thách và phát triển khả năng toán học của các em học sinh.

Hãy truy cập Trang tài liệu 15 Đề Thi Toán 8 Cuối Học Kì 2 Có Đáp Án Và Lời Giải để chuẩn bị tốt nhất cho kỳ thi cuối học kì sắp tới. Chúng tôi tin rằng, với sự cống hiến và ôn tập đều đặn, các em học sinh sẽ nắm vững kiến thức và đạt được thành công trong môn Toán.

Đề thi tham khảo

Đề Thi Giữa Kì 1 Vật Lý 8 Có Lời Giải Và Đáp Án
15 Đề Thi HSG Toán 8 Cấp Huyện Có Đáp Án
20 Đề Thi HSG Toán 8 Có Lời Giải
Đề Thi Giữa Học Kỳ 1 Tiếng Anh 8 Năm 2022-2023 Có Đáp Án-Đề 1
Đề Thi Tiếng Anh 8 Học Kì 2 Có File Nghe Sở GD Quảng Nam 2020-2021

Dưới đây là bản đọc trực tuyến giúp thầy cô và các em học sinh có thể nghiên cứu Online hoặc bạn có thể tải miễn phí với phiên bản word để dễ dàng in ấn cũng như học tập Offline

ĐỀ 1

ĐỀ THI HỌC KỲ II

Môn: Toán Lớp 8

Thời gian: 90 phút

Phần I: Trắc nghiệm. (3,0 điểm).( Ghi vào bài làm chữ cái đứng trước đáp án đúng)

Câu 1: Điều kiện xác định của phương trình

A. hoặc

B.

C.

D.

Câu 2: Tập nghiệm của phương trình = 0 là:

A. {-1;9} B. {1;-9} C. {-1;-9} D.{-1;9 }

Câu 3: Cho có M AB và AM = AB, vẽ MN//BC, N AC.Biết MN = 2cm, thì BC bằng:

A. 4cm

B. 6cm

C. 8cm

D. 10cm

Câu 4: Một hình lập phương có diện tích toàn phần là , thể tích của khối lập phương đó là

A.

B.

C.

D.

Câu 5: Bất phương trình có nghiệm là

A. x >- B. x < C.x <- D. x >

Câu 6: Diện tích xung quanh của hình chóp tứ giác đều có cạnh bằng 6cm và độ dài trung đoạn bằng 10cm là:

A. 120 cm2

B. 240 cm2

C. 180 cm2

D. 60 cm2

Phần II. Tự luận:

Câu 5: (2,0 điểm).Giải các phương trình:

a) b) | x – 9| = 2x + 5 c)

Câu 6 (1,0 điểm). Giải các bất phương trình sau :

a) 2x – x(3x + 1) < 15 – 3x(x + 2) b)

Câu 7 (1,0 điểm).B ình đi xe đạp từ nhà đến trường với vận tốc 15 km/h. Khi tan học về nhà Bình đi với vận tốc 12km/h nên thời gian về nhiều hơn thời gian đi 6 phút. Hỏi nhà Bình cách trường bao xa.

Câu 8: (1,0 điểm)Một hình lăng trụ đứng có đáy là tam giác vuông (như hình vẽ). Độ dài hai cạnh góc vuông của đáy là 5cm, 12cm, chiều cao của lăng trụ là 8cm. Tính diện tích xung quanh và thể tích của hình lăng trụ đó.

Câu 9 (2,0 điểm)

Cho hình thang ABCD (AB//CD). Gọi O là giao điểm của hai đường chéo AC và BD. Qua O kẻ đường thẳng song song với AB, cắt AD và BC theo thứ tự ở E và G.

a) Chứng minh : OA .OD = OB.OC.

b) Cho AB = 5cm, CD = 10 cm và OC = 6cm. Hãy tính OA, OE.

c) Chứng minh rằng:


------------Hết--------------


ĐÁP ÁN

Phần I: Trắch nghiệm ( Mỗi câu đúng cho 0,5 điểm)

Câu

1

2

3

4

5

6

Đáp án

D

B

B

A

C

A

Phần II: Tự luận:

Câu

Đáp án

Điểm

5

(2,0Đ)

a) Giải PT:

20x - 12 - 6x -3 = 9

14x = 9 + 12 +3

14x = 24

x = =

Vậy tập nghiệm của PT là S = { }


0,25


0,25

b) | x – 9| = 2x + 5

* Với x ≥ 9 thì |x – 9| = x – 9 ta có PT: x – 9 = 2x + 5 x = - 14 ( loại)

* Với x < 9 thì |x – 9| = 9 – x ta có PT: 9 – x = 2x + 5 x = 4/3(thỏa mãn)

Vậy tập nghiệm của PT là S = {4/3}


0,25


0,25


0,25

c) ĐKXĐ x ≠ ±3

2(x + 3) + 3(x – 3) = 3x + 5

5x – 3 = 3x + 5

x = 4( thỏa mãn ĐKXĐ)

Vậy tập nghiệm của PT là S = {4}

0,25


0,25


0,25



6

(1,0Đ)

a) 2x – x(3x + 1) < 15 – 3x(x + 2)

2x – 3x2 – x < 15 – 3x2 – 6x

7x < 15

x < 15/7 Vậy tập nghiệm của BPT là: {x / x < 15/7}

0.25


0.25



b) BPT 2(1 – 2x) – 16 ≤ 1 - 5x + 8x

-7x ≤ 15

x ≥ - 15/7. Vậy tập nghiệm của BPT là {x / x ≥ -15/7}

0.25


0.25


7

(1,0Đ)

Gọi khoảng cách từ nhà Bình đến trường là x (km) , ( x > 0)

Thời gian Bình đi từ nhà đến trường là: x /15 (giờ)

Thời gian Bình đi từ trường về nhà là: x /12(giờ)

Vì thời gian về nhiều hơn thời gian đi là 6 phút = 1/10 (giờ)

Ta có PT: x /12 – x /15 = 1/10

5x – 4x = 6

x = 6

Vậy nhà Bình cách trường 6km

0.25


0.25



0.25


0.25

8

(1,0Đ)

+ Tính cạnh huyền của đáy : (cm)

+ Diện tích xung quanh của lăng trụ : ( 5 + 12 + 13 ). 8 = 240(cm2)

+ Diện tích một đáy : (5.12):2 = 30(cm2)

+ Thể tích lăng trụ : 30.8 = 240(cm3)

0.25


0.25


0.25


0.25


9

(2,0Đ)

*Vẽ đúng hình 5 cm

A A B


O

E E G

o

6cm




D 10cm C

a)AOB COD (g-g)

b) Từ câu a suy ra : cm

Do OE // DC nên theo hệ quả định lí Talet : cm

c) OE//AB, theo hệ quả định lý Ta-lét ta có: (1)

*OE//CD, theo hệ quả định lý Ta-lét ta có: (2)

Cộng vế với vế của (1) và (2) ta được: .

hay

Chứng minh tương tự ta có


0.25










0.25


0.25



0.25



0.25



0.25



0.25






0.25




ĐỀ 2

ĐỀ THI HỌC KỲ II

Môn: Toán Lớp 8

Thời gian: 90 phút


PHẦN I. TRẮC NGHIỆM: ( 20 phút - 3điểm) (Học sinh làm bài trên tờ giấy này)

*Khoanh tròn chữ cái đúng trước câu trả lời đúng nhất

C âu 1: Điều kiện xác định của phương trình là:

A. x 0 B. x 3 C. x 0 và x 3 D. x 0 và x -3

C âu 2. Cho thì :

A. a = 3 B. a = - 3 C. a = 3 D.Một đáp án khác

Câu 3: Cho ABC có Â = 600, AB = 4cm, AC = 6cm; MNP có   = 600; NM = 3cm,

N P = 2cm. Cách viết nào dưới đây đúng ?

A.ABCMNP B.ABCNMP C.BACPNM D.BACMNP

C âu 4: Hình hộp chữ nhật có

A.6 đỉnh , 8 mặt , 12 cạnh B.8 đỉnh , 6 mặt , 12 cạnh

C.12 đỉnh , 6 mặt , 8 cạnh D.6 đỉnh , 12 mặt , 8 cạnh

Câu 5: Tập nghiệm của phương trình (x -  )(x +  ) = 0 là

A .{ } B.{-  } C.{ } D.{ }

Câu 6: Bất phương trình nào sau đây là bất phương trình bậc nhất một ẩn

A .5x2 +4<0 B.  C.0.x +4 > 0 D.0,25x -1 < 0

C âu 7. Bất đẳng thức nào sau đây là bất đẳng thức sai.

A. -2.3 ≥ - 6 B. 2.(-3) ≤ 3.(-3) C.2+ (-5) > (-5) + 1 D. 2.(- 4) > 2.(-5)

*

Đ

Điền Đ (đúng) hoặc sai (S) vào ô trống

C


S

âu 8
: Hai phương trình vô nghiệm thì tương đương nhau

C


Đ

âu 9
: Hình vẽ biểu diễn tập nghiệm của bất pt x +2 -7

C


âu 10: Độ dài x trong hình vẽ là x = 4,8

*Điền cụm từ thích hợp vào chỗ trống

C

Đổi chiều bất phương trình

âu 11: Khi nhân hai vế của bất pt với cùng một

số khác 0 ta phải............................................ nếu số đó âm.

Câu 12: Trong ABC, AM là tia phân giác  (M BC). Khi đó ta có 


PHẦN II. TỰ LUẬN: (70 phút – 7điểm)

Bài 1: Giải các phương trình sau:

a) 2x(x + 2) – 3(x + 2) = 0 b)

Bài 2:

a) Tìm x sao cho giá trị của biểu thức A = 2x – 5 không âm.

b) Giải bất phương trình sau và biểu diễn tập nghiệm trên trục số

Bài 3: Một xe vận tải đi từ tỉnh A đến tỉnh B, cả đi lẫn về mất 10 giờ 30 phút. Vận tốc lúc đi là 40km/giờ, vận tốc lúc về là 30km/giờ. Tính quãng đường AB.

Bài 4: Cho tam giác ABC vuông tại A có AB = 6cm; AC = 8cm. Kẻ đường cao AH.

  1. Chứng minh: ABC và HBA đồng dạng với nhau

  2. Chứng minh: AH2 = HB.HC

  3. Tính độ dài các cạnh BC, AH

  4. Phân giác của góc ACB cắt AH tại E, cắt AB tại D. Tính tỉ số diện tích của hai tam giác ACD và HCE

Bài 5: Tìm giá trị nhỏ nhất của B = 3|x - 1| + 4 – 3x

--------------------------------------------------------------------------------

ĐÁP ÁN TOÁN 8 HKII - Phần tự luận

Bài 1: Giải các phương trình sau:

a) 2x(x + 2) – 3(x + 2) = 0 (x +2)(2x -3) = 0 x +2 = 0 hoặc 2x -3 = 0

x = -2; x = 1,5 . vậy S = {-2; 1,5}

b) (1)

ĐKXĐ: x 3

(1) => 5(x +3) + 4(x -3) = x -5 5x +15 +4x -12 = x -5 8x = -8 x = -1(TMĐK)

Vậy S = {-1}

Bài 2:

a)Tìm x sao cho giá trị của biểu thức A = 2x – 5 không âm.

Theo đề ta có 2x – 5 0 x 2,5 . Vậy S = {x | x 2,5}

b) Giải bất phương trình sau và biểu diễn tập nghiệm trên trục số

   20x - 5 – (2 - x) 30x – 9 20x + x – 30x 5 + 2 - 9 - 9x -2

x   . Vậy S = {x | x   }

Bài 3: Gọi x (km) là quãng đường AB (x > 0)

Thời gian đi từ A đến B:   (h)

Thời đi từ B về A :   (h)

Cả đi và về mất 10giờ 30 phút = 10 

N ên ta có pt:   +   = 10,5

Giải pt: x = 180 (TMĐK x > 0)

Vậy quãng đường AB dài 180km

Bài 4:

  1. Chứng minh: ABC và HBA đồng dạng với nhau

ABC HBA (vì   =   = 900 ;   chung )



  1. Chứng minh: AH2 = HB.HC

HAB HCA (vì   =   = 900 ;   =   : cùng phụ với  )

Suy ra   => AH2 = HB . HC

  1. Tính độ dài các cạnh BC, AH

Áp dụng Pita go vào ABC vuông tại A có

BC =  

ABC HBA (cmt) =>   => HA =  

  1. Phân giác của góc ACB cắt AH tại E, cắt AB tại D. Tính tỉ số diện tích của hai tam giác ACD và HCE

ACDHCE (g-g) =>  2

ABC HBA (cmt) =>   => HB = 3,6(cm) => HC = 10- 3,6 = 6,4(cm)

Từ đó   =  


Bài 5: Tìm giá trị nhỏ nhất của B = 3|x - 1| + 4 – 3x

Khi x > 1 ta có B = 3(x -1) + 4 - 3x = 3x - 3 + 4 -3x = 1 (KTMĐK: x > 1)

Khi x 1 ta có B = 3(1 -x) +4 – 3x = 3 -3x + 4 - 3x = - 6x + 7

Vì x 1 nên –x -1 => - 6x - 6 => - 6x + 7 - 6 + 7 => - 6x + 7 1 hay B 1 với mọi x

Vậy GTNN (B) = 1 tại x = 1


ĐỀ 3

ĐỀ THI HỌC KỲ II

Môn: Toán Lớp 8

Thời gian: 90 phút



I) TRẮC NGHIỆM ( 2 ĐIỂM)

Trong các câu trả lời dưới đây, em hãy chọn câu trả lời đúngA,B,C hoặcD.

1) Phương trình (x +1)(x – 2) = 0 có tập nghiệm là:

B. C.S = D. S =

2) Nghiệm của bất phương trình -2x>4 là:

A. x< 2 B.x > -2 C.x < -2 D. x > 2

3)Nếu AD là tia phân giác của tam giác ABC ( D BC) thì:

A. B. C. D.

4)Hình lập phương có cạnh bằng 3 cm, có thể tích bằng:

A. 6cm3 B.9cm3 C. 27cm3 D. 81cm3

II)Tự luận ( 8 điểm)

Bài 1 🙁 1,5đ)

Giải các phương trình:

a) 2(x + 3) = 4x – ( 2+ x)

b)

Bài 2 ( 1,0đ). Giải bất phương trình và biểu diễn tập nghiệm trên trục số:

Bài 3 (1,5đ)

Một ô tô đi từ A đến B với vận tốc 40 km/ h. Lúc về ô tô đó đi với vận tốc 45 km/ h nên thời gian về ít hơn thời gian đi là 30 phút. Tính quãng đường AB.

Bài 4 (3.0đ)

Cho vuông tại A có AB = 12cm, AC = 16 cm. Kẻ đường cao AH và đường phân giác AD của tam giác.

a)Chứng minh:

b)Tìm tỷ số diện tích .

c) Tính BC , BD ,AH.

d)Tính diện tích tam giác AHD.

Bài 5 (1,0đ)

Chứng minh rằng:





ĐÁP ÁN MÔN TOÁN 8 – KÌ II

  1. TRẮC NGHIỆM( 2 ĐIỂM)


- Mỗi câu trả lời đúng được 0,5 điểm.

- Câu 1:A ; Câu 2: C ; Câu 3: D ; Câu 4: C


II. TỰ LUẬN( 8 ĐIỂM)

Bài

Nội dung

Điểm

1a

2(x+3) = 4x –(2 +x)

0,5

1b

điều kiện x



0,5




0,5

2

0,5








0,5

3

-Gọi quãng đường AB là x (km), x>0

-Thời gian đi là

-Thời gian về là

-PT:

Vậy quãng đường AB dài 180 km

0,25


0,5



0,5



0,25

4









-Vẽ hình,ghi GT, KL đúng


4a

0,25


0,25


Nên :

0,25

4b



0,25


0,25


0,25

4c

BC = 20cm

0,25


BD= 60/7cm

0,5


AH = 48/5 cm

0,25

4d

Diện tích tam giác AHD = 1152/175cm2

0,5

5

Chứng minh rằng:

Áp dụng bất đẳng thức





0,25

0.25


0.25


0,25










ĐỀ 4

ĐỀ THI HỌC KỲ II

Môn: Toán Lớp 8

Thời gian: 90 phút



PHẦN I. TRẮC NGHIỆM (2,0 điểm) Viết phương án trả lời đúng (A, B, C hoặc D) vào bài thi

Câu 1. Trong các phương trình sau, phương trình nào là phương trình bậc nhất một ẩn

A. B. C. D.

Câu 2. Nghiệm của phương trình 2x + 7 = x - 2 là

A. x = 9 B. x = 3 C. x = - 3 D. x = - 9

Câu 3. Điều kiện xác định của phương trình

A. B. C. D.

Câu 4. Bất phương trình – 2x + 6 0 tương đương với bất phương trình nào sau đây

A. 2x – 6 0 B. 2x – 6 0 C. – 2x 6 D. x - 3

Câu 5. Tập nghiệm của bất phương trình

A. B. C. D.

Câu 6. Cho với a < 0 thì

A. a = 3 B. a = 3 C. a = 3 D. a = 3 hoặc a = –3

Câu 7. Cho tam giác ABC đồng dạng với tam giác DEF theo tỉ số đồng dạng k = . Chu vi tam giác ABC là 12cm, thì chu vi tam giác DEF là

A. B. 3cm C. 5cm D. 20cm

Câu 8. Một hình hộp chữ nhật có chiều dài 7cm, chiều rộng 4cm và thể tích bằng 140cm3. Chiều cao của hình hộp chữ nhật là

A. 4cm B. 5cm C. 20cm D. 35cm

PHẦN II. TỰ LUẬN (8 ,0 điểm)

Câu 9 (3,0 điểm): Giải các phương trình và bất phương trình sau

a) b) c)

Câu 10 (1,5 điểm): Giải bài toán bằng cách lập phương trình

Hai lớp 8A và 8B có 80 học sinh. Trong đợt góp sách ủng hộ mỗi em lớp 8A góp 2 quyển và mỗi em lớp 8B góp 3 quyển nên cả hai lớp góp được 198 quyển. Tìm số học sinh của mỗi lớp.

Câu 11 (2,5 điểm): Cho tam giác ABC vuông tại A, biết Tia phân giác của góc BAC cắt cạnh BC tại điểm D. Từ D kẻ đường thẳng vuông góc với AC, đường thẳng này cắt AC tại E.

a) Chứng minh rằng tam giác CED và tam giác CAB đồng dạng.

b) Tính

c) Tính diện tích tam giác ABD.

Câu 12 (1,0 điểm): Cho 2 số a và b thỏa mãn a 1; b 1. Chứng minh :


-------------------- Hết --------------------

(Cán bộ coi thi không giải thích gì thêm)


Họ và tên học sinh.…….......……………........................................SBD:…....................…

ĐÁP ÁN


PHẦN I. TRẮC NGHIỆM (2,0 điểm) Mỗi ý trả lời đúng được 0,25 điểm.


Câu

1

2

3

4

5

6

7

8

Đáp án

A

D

D

B

D

B

D

B


PHẦN II. TỰ LUẬN (8điểm).

Câu

Nội dung

Thang điểm

9 (3,0 điểm)

a) ĐKXĐ: x 1; x 2

x = 3 (thỏa mãn ĐKXĐ)

Vậy phương trình có nghiệm x = 3


b)

Với x 3, ta có:

(Thỏa mãn điều kiện)

Với x < 3, ta có:

>3 ( Loại vì không thỏa mãn điều kiện)

Vậy phương trình có tập nghiệm S = {4}


c)

Vậy bất phương trình có tập nghiệm S = {x }

0,25


0,25



0,25


0,25




0,25


0,25



0,25


0,25



0,5


0,25


0,25


10(1,5điểm)

Gọi số học sinh lớp 8A là (học sinh) ĐK: và x < 80

Số học sinh lớp 8B là 80 - (học sinh)

Số sách lớp 8A ủng hộ là 2x (quyển)

Số sách lớp 8B ủng hộ là 3(80 - x) (quyển)

Theo bài ta có phương trình:

2x + 3(80 - x) = 198

2x + 248 - 3x = 198

x = 42 (thoả mãn điều kiện)

Vậy số học sinh lớp 8A là 42 học sinh,số học sinh lớp 8B là 38 học sinh.




0,25


0,25


0,25


0,25

0,25


0,25

11(2,5 điểm)



a)Xét có:

(gt) (1)

là góc chung (2)

Từ (1) và (2) suy ra: (g.g) (điều phải chứng minh).

b)Áp dụng định lý Pitago trong tam giác vuông ABC tại A, ta có:

(cm)

(cm trên) nên mà AB = 9 cm, BC = 15 cm.

Khi đó: => .

c) Vì AD là tia phân giác của nên, ta có:

Hay

Ta có:

Mặt khác:

Vậy .

Vẽ đúng hình cho 0,25điểm









0,25

0,25


0,25



0,25



0,25




0,25




0,25


0,25


0,25


12 (1,0 điểm)

Ta có : =

= =

= =

Do a 1; b 1 nên

Vậy .


0,25



0,25




0,25



0,25



  • Học sinh giải cách khác đúng vẫn cho điểm tối đa.

  • Bài hình không vẽ hình không cho điểm.



ĐỀ 5

ĐỀ THI HỌC KỲ II

Môn: Toán Lớp 8

Thời gian: 90 phút




Câu 1: (2,5 đim) Cho biểu thức :

a) Rút gọn A. b) Tính giá trị của biểu thức A tại x thoả mãn: 2x2 + x = 0

c) Tìm x để A= d) Tìm x nguyên để A nguyên dương.

Câu 2: (1điểm)

     a. Biểu diễn tập nghiệm của mỗi bất phương trình sau trên trục số: x ≥ -1 ;  x < 3.

     b. Cho a < b, so sánh  – 3a +1 với – 3b + 1.

Câu 3: (1,5 điểm) Một người đi xe đạp từ A đến B với vận tốc trung bình 15km/h. Lúc về, người đó chỉ đi với vận tốc trung bình 12km/h, nên thời gian về nhiều hơn thời gian đi là 45 phút. Tính độ dài quãng đường AB (bằng kilômet).

Câu 4: (1,0 điểm) Cho tam giác ABC có AD là phân giác trong của góc A. Tìm x trong hình vẽ sau với độ dài cho sẵn trong hình.  

 Câu 5: (1,5 điểm)   a. Viết công thức tính thể tích của hình hộp chữ nhật.

   b. Áp dụng: Tính thể tích của hình hộp chữ nhật với AA’ = 5cm, AB = 3cm, AD = 4cm (hình vẽ trên).                                               

Câu 6:(2,5 điểm) Cho tam giác ABC vuông tại A có AB = 6cm; AC = 8cm. Kẻ đường cao AH.

a) Chứng minh: ∆ABC và ∆HBA đồng dạng với nhau.

            b) Chứng minh: AH2 = HB.HC.

            c) Tính độ dài các cạnh BC, AH. 



Đáp án đ thi hc kì 2 môn Toán lp 8

ĐỀ 6

ĐỀ THI HỌC KỲ II

Môn: Toán Lớp 8

Thời gian: 90 phút


I. TRẮC NGHIỆM ( 2 điểm) Chọn chữ cái đứng trước câu trả lời đúng và ghi vào bài làm

Câu 1. Phương trình 4x- 4 = 2x + a có nghiệm x = -1 khi :

A. a = 3; B. a = -7; C. a = -6; D. a = -3.

Câu 2. Phương trình có ĐKXĐ là :

A. x -3; x 3; B. x 1; x -3; C. x -1; x 3; D. x -1; x -3.


Câu 3 Cho AD là tia phân giác ( hình vẽ) thì:




A. ; B. ; C. ; D. .

Câu 4 Cho ABC DEF theo tỉ số đồng dạng là thì DEF ABC theo tỉ số đồng dạng là:

A. ; B. ; C. ; D. .

II. TỰ LUẬN (8 điểm)

Câu 1.( 3 điểm ) Giải các phương trình

a) 2x - 1 = x + 8; b)(x-5)(4x+6) = 0; c) .

Câu 2 (1,5 điểm) Giải bài toán bằng cách lập phương trình:

Một ô tô đi từ A đến B với vận tốc 35 km/h. Khi từ B về A ô tô đi với vận tốc 42 km/h vì vậy thời gian về ít hơn thời gian đi là nửa giờ. Tính độ dài quãng đường AB.

Câu 3 (3 điểm):

Cho hình bình hành ABCD, điểm F trên cạnh BC. Tia AF cắt BD và DC lần lượt ở E và G. Chứng minh rằng:

a) BEF đồng dạng DEA

b) EG.EB=ED.EA

c) AE2 = EF . EG

Câu 4 (0,5 điểm):Cho x, y, z đôi một khác nhau và .

Tính giá trị của biểu thức:

................................Hết............................



HƯỚNG DẪN CHẤM

I- TRẮC NGHIỆM( 2 điểm): Mỗi ý đúng cho 0,5 điểm

Câu

1

2

3

4

Đáp án

C

B

B

D

II. TỰ LUẬN (8 điểm)

CÂU

YÊU CẦU

Điểm

1.

(3 điểm)

a) 2x – 1 = x + 8

2x – x = 8 + 1

x = 9. Kết luận


0,5 đ

0,5 đ

b)(x-5)(4x+6) = 0

<=>x-5 =0 hoặc 4x + 6 =0

<=>x = 5hoặc x = Kết luận


0,5 đ

0,5 đ

c)ĐKXĐ: x 1;x 3

Quy đồng và khử mẫu ta được:

(x -5)(x - 3) + 2(x - 1) = ( x - 1)(x - 3)

-2x = -10 x = 5(Thỏa mãn ĐKXĐ)

Kết luận



0,5 đ

0,5 đ

2.

(1,5 điểm)


Gọi độ dài quãng đường AB là x (km) (ĐK: x > 0)

Thời gian lúc đi là: (giờ), thời gian lúc về là : (giờ). Theo bài ra ta có phương trình: - =

Giải phương trình được x = 105, thoả mãn điều kiện của ẩn. Trả lơi: Vậy độ dài quãng đường AB là 105 km.

0,25 đ

0,25 đ


0,25 đ

0,5 đ


0,25 đ

3

(3 điểm)

Vẽ hình

a) HS chứng minh được BEF DEA ( g.g)

b) Xét DGE BAE

Ta có: DGE = BAE ( hai góc so le trong)

DEG = BEA (hai góc đối đỉnh)

=> DGE BAE (g. g)

=> EG.EB=ED.EA

c) BEF DEA nên hay (1)

DGE BAE nên (2)

Từ (1) và (2) suy ra: , do đó AE2 = EF . EG.














0,5 đ





0,75 đ





0,75 đ








1 đ






4

(0,5 điểm)

yz = –xy–xz

x2+2yz = x2+yz–xy–xz = x(x–y)–z(x–y) = (x–y)(x–z)

Tương tự: y2+2xz = (y–x)(y–z) ;

z2+2xy = (z–x)(z–y)

Do đó:

a = 1




0,25 đ



0,25 đ





ĐỀ 7

ĐỀ THI HỌC KỲ II

Môn: Toán Lớp 8

Thời gian: 90 phút


Câu 1: (2 điểm) Giải các phương trình sau:

a) 3x + 2 = 5

b) (x + 2)(2x – 3) = 0


Câu 2: (2 điểm)

a) Tìm x sao cho giá trị của biểu thức A = 2x – 5 không âm.

b) Giải bất phương trình sau và biểu diễn tập nghiệm trên trục số:

Câu 3: (2 điểm) Tổng của hai số bằng 120. Số này gấp 3 lần số kia. Tìm hai số đó.


Câu 4: (1 điểm) Tính thể tích của một hình lăng trụ đứng có đáy là tam giác vuông, chiều cao của lăng trụ là 7cm. Độ dài hai cạnh góc vuông của đáy là 3cm và 4cm.


Câu 5: (3 điểm) Cho tam giác ABC vuông tại A có AB = 6cm; AC = 8cm. Kẻ đường cao AH.

  1. Chứng minh ABC HBA

  2. Tính độ dài các cạnh BC, AH.

  3. Phân giác của góc ACB cắt AH tại E, cắt AB tại D. Tính tỉ số diện tích của hai tam giác ACD và HCE.


--------------------------------Hết---------------------------------




















ĐÁP ÁN - BIỂU ĐIỂM


Câu

Nội dung

Điểm


1

a) 3x + 2 = 5 3x = 3 x = 1

Vậy tập nghiệm của phương trình là S = {1}

b) (x + 2)(2x – 3) = 0

x + 2 = 0 hoặc 2x - 3 = 0 x = - 2 hoặc x =

Vậy tập nghiệm của phương trình là S = {- 2 ; }

1




1



2

a) A không âm 2x – 5 0 x

b)

2x < -10 x < -5

Vậy tập nghiệm bất phương trình là

Biểu diễn được tập nghiệm trên trục số.


1



0.5


0.5

3

Gọi số thứ nhất là x (x nguyên dương; x < 120)

Thì số thứ hai là 3x

Vì Tổng của chúng bằng 120 nên ta có phương trình:

x + 3x = 120 x = 30 (Thỏa mãn điều kiện đặt ẩn)

Vậy số thứ nhất là 30, số thứ hai là 90.

0.5

0.5


0.5

0.5

4

Thể tích của hình lăng trụ đứng tam giác là:

V = S.h = .3.4.7 = 42(cm3)


1


5

Vẽ hình chính xác,

Ghi được GT, KL.

a) ABC HBA (g.g)

, chung.

b) Ta có: BC2 =AB2 + AC2

BC2 = 100

BC = 10 (cm)

ABC HBA (chứng minh trên) =>

hay (cm)

c) Ta có:

ADC HEC (g.g) vì , (CD là phân giác góc ACB)

=> Vậy

0,5



0,5


0,5



0,5


0,5




0,5





ĐỀ 8

ĐỀ THI HỌC KỲ II

Môn: Toán Lớp 8

Thời gian: 90 phút


Bài 1.( 1,5 điểm ) Cho biểu thức : A = ( với x 3 )

a, Rút gọn biểu thức A

b, Tìm x để A =

Bài 2.( 2,5 điểm ). Giải các phương trình và bất phương trình sau:

a,

b,

c,

Bài 3 . (1,5 điểm Một người đi ô tô từ A đến B với vận tốc 35 km/h. Lúc từ B về A người đó đi với vận tốc bằng vận tốc lúc đi . Do đó thời gian về ít hơn thời gian đi là 30 phút. Tính quãng đường AB.

Bài 4 ( 3 điểm). Cho tam giác nhọn ABC, các đường cao AD, BE, CF cắt nhau tại H

a/Chứng minh đđồng dạng với . Từ đó suy ra AF.AB = AE. AC

b/Chứng minh:

c/Cho AE = 3cm, AB= 6cm. Chứng minh rằng SABC = 4SAEF

Bài 5. ( 0,5 điểm ). ) Cho hình hộp chữ nhật ABCD.A’B’C’D’ có AB = 12 cm, AD = 16 cm, AA’ = 25 cm. Tính diện tích toàn phần và thể tích hình hộp chữ nhật..

Bài 6.( 1 điểm ) Cho 3 số a,b,c thỏa mãn a + b + c = 2. tìm giá trị nhỏ nhất của biểu thức :

A = a + b + c






ĐÁP ÁN VÀ THANG ĐIỂM


Bài

Đáp án

Điểm





Bài1

(1,5 đ )


  1. ( 1 đ) A = ( x 3 )

= + -

=

=

=




0,25


0,25


0,25



0,25

b) ( 0,5 đ) . ĐK : x 3

A = = x - 3 = 4

x= 7 ( thỏa mãn điều kiện )

Vậy x = 7 thì A =




0,25


0,25




Bài 2

(2,5đ )


a, (0,75 đ)

TH1: x+5 = 3x+1 với x

x = 2 (nhận)

TH2: –x -5 =3x+1 với x < -5

x = (loại )

Vậy nghiệm của phương trình là x = 2


b, ( 0,75 đ).

c,( 1 đ)

ĐKXĐ:

(x – 2)(x – 2) – 3(x+2)=2(x-11) = 0

x-4=0 hoặc x-5=0 x=4 (nhận) hoặc x=5 (nhận)

Vậy: tập nghiệm của phương trình là:S={4;5}



0,25


0,25


0,25





0,25

0,25


0,25




0,25



0,25




0,25



0,25

Bài 3

( 1,5đ )

Gọi quãng đường AB là x(km) (x > 0 )

Vận tốc từ B dến A : 42 km/h

Thời gian từ A đến B là : (h)

Thời gian từ B đến A là : (h)

Theo đề bài ta có phương trình :

Giải phương trình được: x = 105 (TM)

Quãng đường AB là 105 km

0,25

0,25


0,25

0,25


0,25


0,25

Bài 4

( 3,0 đ)

Vẽ hình, ghi GT,KL

a. Xét tam giác AEB và tam giác AFC có:

Do đó: (g.g)

Suy ra:

b. Xét tam giác AEF và tam giác ABC có:

 chung

( chứng minh trên)

D o đó: (c.g.c)

c . (cmt)

suy ra:

hay SABC = 4SAEF










0,5


1,0





1,0





0,5

Bài 5

( 0,5 đ)

Diện tícDiện tích toàn phần hình hộp chữ nhật

Stp = Sxq + 2S

= 2 p . h + 2 S

= 2 ( AB + AD ) . AA’ + 2 AB . AD

= 2 ( 12 + 16 ) . 25 + 2 . 12 . 16

= 1400 + 384

= 1784 ( cm2 )

Thể tích hình hộp chữ nhật

V = S . h = AB . AD . AA’

= 12 . 16 . 25

= 4800 ( cm3 )

0,25






0,25

Bài 6

( 1đ )

- Chỉ ra được 4 = a + b + c + 2(ab + bc + ca )

- mà a + b + c ab + bc + ca

Suy ra 4 3 ( a + b + c )

a + b + c Min A = , đạt được khi a = b = c =

0,25

0,25

0,25

0,25



ĐỀ 9

ĐỀ THI HỌC KỲ II

Môn: Toán Lớp 8

Thời gian: 90 phút


Bài 1. ( 1,5 điểm ).Cho biểu thức : A =

a, Rút gọn biểu thức A.

b, Tìm x để A = 1

Bài 2: (2,5 điểm) . Giải các phương trình và bất phương trình sau :

a, +x = 14 b,

c,

Bài 3: (1,5 điểm) Một bạn học sinh đi học từ nhà đến trường với vận tốc trung bình 4 km/h. Sau khi đi được quãng đường bạn ấy đã tăng vận tốc lên 5 km/h. Tính quãng đường từ nhà đến trường của bạn học sinh đó, biết rằng thời gian bạn ấy đi từ nhà đến trường là 28 phút..

Bài 4: (3 điểm Cho tam giác ABC vuông tại A, có AB = 3cm, AC = 4cm, đường phân giác AD. Đường vuông góc với DC cắt AC ở E.

  1. Chứng minh rằng tam giác ABC và tam giác DEC đồng dạng.

  2. Tính độ dài các đoạn thẳng BC, BD.

  3. T ính độ dài AD.

  4. Tính diện tích tam giác ABC và diện tích tứ giác ABDE.

Bài 5: (0,5 điểm). Một hình lăng trụ đứng có đáy là tam giác vuông (như hình vẽ). Độ dài hai cạnh góc vuông của đáy là 5cm, 12cm, chiều cao của lăng trụ là 8cm. Tính diện tích xung quanh và thể tích của hình lăng trụ đó.

Bài 6 : ( 1 điểm).Cho phương trình ẩn x sau: . Tìm các giá trị của m để phương trình có nghiệm là một số không âm.



ĐÁP ÁN – THANG ĐIỂM


Bài

Đáp án

Điểm


1

(1,5đ)

a,A =

ĐKXĐ : x 2 ; x -2 ; x

A = .

= .

= =

b, Đk 😡 2 ; x -2 ; x

A =1 = 1 x+2 = -4 x= -6 ( thỏa mãn điều kiện )

Vậy x = -6 thì A =1





0,25


0,25


0,25


0,25


0,25

0,25



Bài2

(2,5đ)



a, ( 0,75 đ)

+x = 14 ( 1 )

+ Nếu 2x - 1 0 hay x thì = 2x – 1

PT ( 1) 2x – 1 + x = 14 3x = 15 x= 5 ( thỏa mãn)

+ Nếu 2x-1 < 0 hay x < thì = 1-2x

PT ( 1 ) 1-2x + x = 14 -x =13 x= -13 ( thỏa mãn )

Vậy tập nghiệm của phương trình là S =

b,(0,75 )

2(2x + 2) < 12 + 3(x – 2)

4x + 4 < 12 + 3x – 6

4x – 3x < 12 – 6 – 4 x < 2

c,( 1 đ )

ĐKXĐ : x ; x

=

3x – 6 – 2x – 2 = 4x – 2 3x – 2x – 4x = -2 + 6 +2

-3x = 6 x = - 2 ( thỏa mãn điều kiện )

Vậy tập nghiệm của phương trình là S =



0,25



0,25


0,25



0,25

0,25

0,25




0,25

0,25

0,25

0,25

Bài 3

(1,5đ)


Gọi quãng đường cần tìm là x (km). Điều kiện x > 0

Quãng đường đi với vận tốc 4km/h là x(km) Thời gian đi là x :4 = (giờ)

Quãng đường đi với vận tốc 5km/h là x(km) Thời gian đi là x :5 = (giờ)

Thời gian đi hêt q/đường là 28 phút = giờ

Ta có phương trình:

Giải phương trình ta tìn được x = 2 (thỏa mãn điều kiện)

V ậy quãng đường từ nhà đến trường của bạn học sinh đó là 2km

0,25

0,25

0,25


0,25

0,25

0,25


Bài 4

(3đ)





























Hình vẽ cho câu a, b







Tam giác ABC và tam giác DEC , có :

( giải thích )

V à có chung

Nên (gg)

+ Tính được BC = 5 cm

+ Áp dụng tính chất đường phân giác :

+ Áp dụng tính chất dãy tỉ số bằng nhau:

+ Tính được DB = cm

Dựng DH AB DH // AC ( cùng vuông góc với AB )

+ Nên DH = ( hệ quả Ta lét )

+ Chứng minh tam giác AHD vuông cân và tính được AD =

SABC =

+Tính DE = cm

+ SEDC = cm2

+ Tính được S ABDE = SABC SEDC = cm2

0,25


0.5

0.25




0,25


0,25



0,25


0,25






0,25


0,25


0,25


0,25


5

(0,5đ)

+ Tính cạnh huyền của đáy : (cm)

+ Diện tích xung quanh của lăng trụ : ( 5 + 12 + 13 ). 8 = 240(cm2)

+ Diện tích một đáy : (5.12):2 = 30(cm2)

+ Thể tích lăng trụ : 30.8 = 240(cm3)

0,5



6

(1đ)



2x2 -2x +mx –m -2x2 +mx +m -2 = 0

(m-1)x =1

Để phương trình có nghiệm là một số không âm thì m-1 > 0

m > 1


0,25

0.25

0,25

0,25




ĐỀ 10

ĐỀ THI HỌC KỲ II

Môn: Toán Lớp 8

Thời gian: 90 phút


Bài 1. ( 1,5 điểm ).Cho biểu thức :

A =

a, Rút gọn biểu thức A.

b, Tìm x để A = 1

Bài 2: (2,5 điểm) . Giải các phương trình và bất phương trình sau :

a, |x-9|=2x+5 b,

c,

Bài 3 (1,5 điểm ). Một tàu chở hàng khởi hành từ thành phố Hồ Chí Minh với vận tốc 36km/h. Sau đó 2 giờ một tàu chở khách cũng đi từ đó với vận tốc 48km/h đuổi theo tàu hàng. Hỏi tàu khách đi bao lâu thì gặp tàu hàng ?

Bài 4: (3 điểm) ) Cho tam giác ABC vuông tại A có AB = 6cm; AC = 8cm. Kẻ đường cao AH.

  1. Chứng minh ABC HBA

  2. Tính độ dài các cạnh BC, AH.

c) Phân giác của góc ACB cắt AH tại E, cắt AB tại D. Tính tỉ số diện tích của hai tam giác ACD và HCE.

Bài 5: (0,5 điểm). Tính thể tích của một hình lăng trụ đứng có đáy là tam giác vuông, chiều cao của lăng trụ là 7cm. Độ dài hai cạnh góc vuông của đáy là 3cm và 4cm.

Bài 6 : ( 1 điểm). Cho 3 số thực dương a, b, c thỏa mãn . Tìm GTNN của


ĐÁP ÁN – THANG ĐIỂM


Bài

Đáp án

Điểm

1

(1,5đ)

a,A =

ĐKXĐ : x 2 ; x -2 ; x

A = .

= .

= =

b, Đk 😡 2 ; x -2 ; x

A =1 = 1 x+2 = -4 x= -6 ( thỏa mãn điều kiện )

Vậy x = -6 thì A =1





0,25


0,25


0,25


0,25


0,25

0,25


2

(2,5đ)



a, ( 0,75 đ)

| x – 9| = 2x + 5

* Với x ≥ 9 thì |x – 9| = x – 9 ta có PT: x – 9 = 2x + 5 x = - 14 ( loại)

* Với x < 9 thì |x – 9| = 9 – x ta có PT: 9 – x = 2x + 5 x = 4/3(thỏa mãn)

Vậy tập nghiệm của PT là S = {4/3}

b,(0,75 )

2(1 – 2x) – 16 ≤ 1 - 5x + 8x

-7x ≤ 15

x ≥ - 15/7.

Vậy tập nghiệm của BPT là {x / x ≥ -15/7}

c,( 1 đ )

ĐKXĐ x ≠ ±3

2(x + 3) + 3(x – 3) = 3x + 5

5x – 3 = 3x + 5

x = 4( thỏa mãn ĐKXĐ)

Vậy tập nghiệm của PT là S = {4}


0,25



0,25


0,25



0,25

0,25

0,25


0,25

0,25


0,25


0,25

3

(1,5đ)


Gọi x (giờ) là thời gian tàu khách đi để đuổi kịp tàu hàng (x >0)

Khi đó tàu khách đã chạy được một quãng đường là 48.x (km)

Vì tàu hàng chạy trước tàu khách 2 giờ, nên khi đó tàu khách đã chạy được quãng đường là 36(x+ 2) km.

Theo đề bài : 48x = 36(x + 2)

48x – 36x = 72

x = (TMĐK)

T àu khách đi được 6 giờ thì đuổi kịp tàu hàng.

0,25

0,25

0,5


0,5

4

(3đ)





























V ẽ hình chính xác,

Ghi được GT, KL.







a) ABC HBA (g.g)

, chung.

b) Ta có: BC2 =AB2 + AC2

BC2 = 100

BC = 10 (cm)

ABC HBA (chứng minh trên) =>

hay (cm)

c) Ta có:

ADC HEC (g.g) vì , (CD là phân giác góc ACB)

=> Vậy



0,5





0,5



0,5


0,5





0,5




0,5






5

(0,5đ)

Thể tích của hình lăng trụ đứng tam giác là:

V = S.h = .3.4.7 = 42(cm3)

0,5


6

(1đ)




Dấu “=” xảy ra

Vậy GTNN của A



0,25


0.25


0,25



0,25



ĐỀ 11

ĐỀ THI HỌC KỲ II

Môn: Toán Lớp 8

Thời gian: 90 phút



Phần I: Trắc nghiệm. (2,0 điểm).( Ghi vào bài làm chữ cái đứng trước đáp án đúng)

Câu 1: Điều kiện xác định của phương trình

A. hoặc

B.

C.

D.

Câu 2: Tập nghiệm của phương trình là:

A. S = {3}

B. S = {1}

C. S = {1; 3}

D. S = {4}

Câu 3: Cho có M AB và AM = AB, vẽ MN//BC, N AC. Biết MN = 2cm, thì BC bằng:

A. 4cm

B. 6cm

C. 8cm

D. 10cm

Câu 4: Một hình lập phương có diện tích toàn phần là , thể tích của khối lập phương đó là

A.

B.

C.

D.

Phần II. Tự luận:

Câu 5: (2,0 điểm).Giải các phương trình:

a) (x-2)(x+1) = x2 -4 b) |x-9|=2x+5 c)

Câu 6 (1,5 điểm). Giải các bất phương trình sau và biểu diễn tập nghiệm trên trục số:

a) 2x - x(3x+1) < 15 – 3x(x+2) b)

Câu 7 (1,5 điểm).

Bình đi xe đạp từ nhà đến trường với vận tốc 15 km/h. Khi tan học về nhà Bình đi với vận tốc 12km/h nên thời gian về nhiều hơn thời gian đi 6 phút. Hỏi nhà Bình cách trường bao xa.

Câu 8 (2,5 điểm)

Cho ABC vuông tại B, đường phân giác AD (D BC), Kẻ CK vuông góc với đường thẳng AD tại K.

a) Chứng minh BDA KDC, từ đó suy ra

b) Chứng minh DBK DAC

c) Gọi I là giao điểm của AB và CK , chứng minh AB.AI + BC.DC = AC2

Câu 9: (0,5 điểm) Cho 3 số thực dương a, b, c thỏa mãn . Tìm GTNN của

------------Hết--------------






ĐÁP ÁN

Phần I: Trắch nghiệm ( Mỗi câu đúng cho 0,5 điểm)

Câu

1

2

3

4

Đáp án

D

C

B

A

Phần II: Tự luận:

Câu

Đáp án

Điểm

5

(2Đ)

a) Giải PT: (x – 2)(x + 1) = x2 – 4

(x – 2)(x + 1 – x – 2) = 0

x = 2

Vậy tập nghiệm của PT là S = {2}


0,25


0,25

b) | x – 9| = 2x + 5

* Với x ≥ 9 thì |x – 9| = x – 9 ta có PT: x – 9 = 2x + 5 x = - 14 ( loại)

* Với x < 9 thì |x – 9| = 9 – x ta có PT: 9 – x = 2x + 5 x = 4/3(thỏa mãn)

Vậy tập nghiệm của PT là S = {4/3}


0,25

0,25

c) ĐKXĐ x ≠ ±3

2(x + 3) + 3(x – 3) = 3x + 5

5x – 3 = 3x + 5

x = 4( thỏa mãn ĐKXĐ)

Vậy tập nghiệm của PT là S = {4}

0,25

0,25

0,25


0,25

6

(1,5Đ)

a) 2x – x(3x + 1) < 15 – 3x(x + 2)

2x – 3x2 – x < 15 – 3x2 – 6x

7x < 15

x < 15/7 Vậy tập nghiệm của BPT là: {x / x < 15/7}

Biểu diễn được tập nghiệm trên trục số

0.25


0.25



0.25

b) BPT 2(1 – 2x) – 16 ≤ 1 - 5x + 8x

-7x ≤ 15

x ≥ - 15/7. Vậy tạp nghiệm của BPT là {x / x ≥ -15/7}

Biểu diễn được tập nghiệm trên trục số


0.25

0.25


0.25

7

(1,5Đ)

Gọi khoảng cách từ nhà Bình đến trường là x(km) , ( x>0)

Thời gian Bình đi từ nhà đến trường là: x/15 (giờ)

Thời gian Bình đi từ trường về nhà là: x/12(giờ)

Vì thời gian về nhiều hơn thời gian đi là 6phút = 1/10 (giờ)

Ta có PT: x/12 – x/15 = 1/10

5x – 4x = 6

x = 6

Vậy nhà Bình cách trường 6km

0.25

0.25

0.25

0.25


0.25


0.25

8

2,5Đ)









a) BDA và KDC có BDA KDC(g-g)


( tính chất tỷ lệ thức )



0.5



0.5

b/ DBK và DAC có

DBK DAC ( c – g – c )



0.5


0.5

c/ Kẻ ID cắt AC tại H

Trong tam giác IAC ta có

( ABC vuông tại B )

( GT )

D là trực tâm của IAC

Từ (1) và (2) AB. BI + BD.DC = AC.AH + AC.CH

= AC (AH+CH)

= AC. AC= AC2








0.25







0.25

9

(0,5Đ)

Dấu “=” xảy ra

Vậy GTNN của A






0.25



0.25











ĐỀ 12

ĐỀ THI HỌC KỲ II

Môn: Toán Lớp 8

Thời gian: 90 phút


I. Phần trắc nghiệm khách quan (2,0 điểm ):

Em hãy chọn chỉ một chữ cái A hoặc B, C, D đứng trước lại câu trả lời đúng

Câu 1: Tập nghiệm của phương trình

A.

B.

C.

D. Một kết quả khác

Câu 2: Điều kiện xác định của phương trình

A. hoặc

B.

C.

D.

Câu 3: Bất phương trình có tập nghiệm là :

A.

B.

C.

D.

Câu 4: Một hình hộp chữ nhật có ba kích thước là 5cm; 8cm; 7cm. Thể tích của hình hộp chữ nhật đó là :

A.

B.

C.

D.


II. Phần tự luận (8,0 điểm)

Câu 1:( 3,0 điểm) Giải các phương trình và bất phương trình sau:

a) ; b) ; c)

Câu 2:( 1,0 điểm)

Một người đi xe máy từ A đến B với vận tốc 25 km/h . Lúc về người đó đi với vận tốc 30 km/h , nên thời gian về ít hơn thời gian đi là 20 phút. Tính quãng đường AB ?

Câu 3:( 3,0 điểm ) 

Cho tam giác ABC có AH là đường cao ( ). Gọi D và E lần lượt là hình chiếu của H trên AB và AC. Chứng minh rằng :

a) ABH ~ AHD

b)

c) Gọi M là giao điểm của BE và CD. Chứng minh rằng DBM ~ ECM.

Câu 4:( 1,0 điểm )

Cho phương trình ẩn x sau: . Tìm các giá trị của m để phương trình có nghiệm là một số không âm.





ĐÁP ÁN

  1. Phần trắc nghiệm khách quan ( 2,0 điểm ):

Câu

Đáp án đúng

Điểm

Câu 1

B

0,5

Câu 2

C

0,5

Câu 3

A

0,5

Câu 4

D

0,5

II. Phần tự luận (8,0 điểm)

Câu

Đáp án

Điểm









Câu 1

(3,0 điểm)


a)Ta có

Vậy phương trình có nghiệm là


0,75


0,25

b)Ta có

Vậy bất phương trình có tập nghiệm là

0,5


0,25


0,25

c)Ta có ĐKXĐ:

Vậy phương trình vô nghiệm


0,25



0,5




0,25

Câu 2

( 1,0 điểm)

Gọi quãng đường AB là x km ( x > 0)

Do đi từ A đến B với vận tốc 25 km/h nên thời gian lúc đi là (h)

Do đi từ B về A với vận tốc 30 km/h nên thời gian lúc về là (h).

Vì thời gian về ít hơn thời gian đi là 20 phút =

nên ta có phương trình:

Vậy quãng đường AB dài 50 km.



0,25






0,5



0,25

Câu 3

( 3,0 điểm)









a) ABH ~ AHD

ABH và AHD là hai tam giác vuông có BAH chung

Vậy ABH ~ AHD

b)

Chứng minh AEH ~ HEC

=> =>

c) Gọi M là giao điểm của BE và CD. Chứng minh rằng DBM ~ ECM.

ABH ~ AHD => AH2 = AB.AD


ACH ~ AHE => AH2 = AC.AE

Do đó AB.AD= AC.AE =>

=> ABE ~ ACD(chung BÂC)

=> ABE = ACD

=> DBM ~ ECM(g-g).










1,0







1.0













0,5




0,5

Câu 4

( 3,0 điểm)

2x2 -2x +mx –m -2x2 +mx +m -2 = 0

(m-1)x =1

Vậy để phương trình có nghiệm là một số không âm thì m-1 > 0

m > 1









ĐỀ 13

ĐỀ THI HỌC KỲ II

Môn: Toán Lớp 8

Thời gian: 90 phút


I. TNKQ (2 điểm)

Ghi vào bài làm chữ cái đứng trước câu trả lời đúng nhất.

Câu 1. Kết quả của phép tính (2+x)2 là:

A. 4+2x+x2 B. 4+4x+x2 C. 2+2x+x2 D. 2+4x+x2

Câu 2. Kết quả của rút gọn phân thức là:

A. B. C. D.

Câu 3. Nghiệm của bất phương tr?nh: 4x+2 < 3x+3 là:

A. x<1 B. x>1 C. D. x<-1

Câu 4. Tứ giác nào sau đây có hai đường chéo bằng nhau và cắt nhau tại trung điểm mỗi đường:

A. H?nh b?nh hành   B. H?nh thang cân  

C. H?nh chữ nhật  D. H?nh thoi

Câu 5. Diện tích h?nh thang vuông có một góc 450 các cạnh đáy là 4cm và 6cm bằng:

A. 6cm2 B. 20cm2 C. cm2 D. 10cm2

II. Tự luận (8 điểm)

Câu 6. ( 2 điểm)

1. Giải phương tr?nh:

2. Giải bất phương tr?nh:

Câu 7. (2 điểm): Một ô tô chạy trên qu?ng đường AB. Lúc đi ô tô chạy với vận tốc 35km/h, lúc về ô tô chạy với vận tốc 42km/h, v? vậy thời gian về ít hơn thời gian đi là nửa giờ. Tính chiều dài qu?ng đường AB.

Câu 8. (3 điểm): Cho h?nh b?nh hành ABCD, điểm F trên cạnh BC. Tia AF cắt BD và DC lần lượt ở E và G. Chứng minh:

a .

b.

c. không đổi khi F thay đổi trên BC.

Câu 9. (1 điểm) Cho 3 số dương a, b, c có abc=1.

Chứng minh rằng:


-------------------------- Hết-------------------------


Mỗi câu đúng được 0,4 điểm

Câu

1

2

3

4

5

ĐA

B

C

A

C

D

II. Tự luận (8 điểm)

Câu 6: (2 điểm)

Phần

Nội dung tr?nh bày

Điểm

1

Vậy nghiệm của phương tr?nh: x=-7




0,5

0,25

0,25

2

Vậy nghiệm của bất phương tr?nh:



0,5


0,25


0,25

Câu 7: (2 điểm)

Phần

Nội dung tr?nh bày

Điểm


Gọi chiều dài qu?ng đường AB là x (km)

ĐK: x>0

Thời gian ô tô đi: (h)

Thời gian ô tô về: (h)

V? thời gian về ít hơn thời gian đi là nửa giờ, ta có phương tr?nh:

- =

Vậy qu?ng đường AB dài 105km.


0,25


0,25


0,25


0,25




0,75

0,25

Câu 8: ( 3 điểm)

Phần

Nội dung tr?nh bày

Điểm

a


Ta có: BF//AD (gt)

(so le trong)

(so le trong)

(g.g)


Lại có: AB//GD (gt)

(so le trong)

(đ.đ)

(g.g)










0,5



0,5

b

Theo câu a, ta có:

(g.g) (1)

­(g.g) (2)

Từ (1) và (2) suy ra


0,25



0,25


0,5

c

Theo câu a, ta có:

(g.g) (3)

(g.g) (4)

Từ (3) và (4) suy ra (không đổi).

Vậy BF.DG không đổi khi F thay đổi trên BC.


0,25


0,25


0,25

0,25

Câu 9: ( 1 điểm)

Phần

Nội dung tr?nh bày

Điểm


Ta có:

Mà abc=1



0,5



0,25


0,25


Điểm toàn bài

10



ĐỀ 14

ĐỀ THI HỌC KỲ II

Môn: Toán Lớp 8

Thời gian: 90 phút


Câu 1: (3 điểm) Giải các phương trình sau :

a) 2x - 3 = 5 b) (x + 2)(3x - 15) = 0

c)

Câu 2: (1,5điểm)

a) Giải bất phương trình sau và biểu diễn tập nghiệm trên trục số

b) Tìm x để giá trị của biểu thức 3x – 4 nhỏ hơn giá trị của biểu thức 5x – 6

Câu 3: (2 điểm) Một người đi xe máy từ tỉnh A đến tỉnh B với vận tốc 40 km/h. Lúc về người đó uống rượu nên đi nhanh hơn với vận tốc 70 km/h và thời gian về cũng ít hơn thời gian đi 45 phút. Tính quãng đường tỉnh A đến tỉnh B.

(Các em tự suy nghĩ xem người này có vi phạm luật giao thông hay không nếu vận tốc tối đa trên đoạn đường này là 60 km.)

Câu 4: (4 điểm) Cho ABC vuông tại A, có AB = 12 cm ; AC = 16 cm. Kẻ đường cao AH H BC).

a) Chứng minh: HBA ABC

  1. Tính độ dài các đoạn thẳng BC, AH.

c) Trong ABC kẻ phân giác AD (D BC). Trong ADB kẻ phân giác DE (E AB); trong ADC kẻ phân giác DF (F AC).

Chứng minh rằng:

Câu 5: (0,5 điểm) Tính thể tích của hình hộp chữ nhật ABCD.A’B’C’D’ trong hình dưới đây. Biết: AB=5cm, BC=4cm, CC’=3cm



ĐÁP ÁN – THANG ĐIỂM


Câu

Đáp án

Điểm

1


a) 2x - 3 = 5

2x = 5 + 3

2x = 8

x = 4

Vậy tập nghiệm của phương trình là S = { 4}


Vậy tập nghiệm của phương trình là S = {- 2; 3}


c) ĐKXĐ: x - 1; x 2

3(x – 2) – 2(x + 1) = 4x - 2

3x – 6 – 2x - 2 = 4x -2

3x = 6

x = -2 (thỏa mãn ĐKXĐ)

Vậy tập nghiệm của phương trình là S = {-2}


0,25

0,25

0,25



0,25

0,25

0,25


0,25

0,25

0,25

0,25

0,25

0,25

2



a)

2(2x + 2) < 12 + 3(x – 2)

4x + 4 < 12 + 3x – 6

4x – 3x < 12 – 6 – 4

x < 2

Biểu diễn tập nghiệm

b) 3x – 4 < 5x – 6

3x – 5x < - 6 +4

-2x < -2

x > -1

Vậy tập nghiệm của BPT là {x | x > -1}


0,25


0,25

0,25



0,25


0,25

0,25

3


- Gọi độ dài quãng đường AB là x (km), x > 0

- Thời gian lúc đi từ A đến B là: (h)

- Thời gian lúc về là: (h)

- Lập luận để có phương trình: = +


- Giải phương trình được x = 70


- Kết luận.

0,25

0,25

0,25


0,5

0,5

0,25

4





























Vẽ hình đúng, chính xác, rõ ràng

a) Xét HBA ABC có:

HBA ABC (g.g)


b) Áp dụng định lí Pytago trong tam giác ABC ta có:

=

BC = 20 cm

Ta có HBA ABC (Câu a)

AH = = 9,6 cm

c) (vì DE là tia phân giác của )

(vì DF là tia phân giác của )

(1) (nhân 2 vế với )

0,5


0.5

0.5




0,25


0,25



0,25


0,25




0,25


0,25


0,5


0,5

5

Thể tích hình hộp chữ nhật là: V= 5.4.3 = 60 (cm3)

0,5






ĐỀ 15

ĐỀ THI HỌC KỲ II

Môn: Toán Lớp 8

Thời gian: 90 phút



Câu 1: (3 điểm) Giải các phương trình sau :

a) 2x - 3 = 5 b) (x + 2)(3x - 15) = 0

c)

Câu 2: (1,5điểm)

a) Giải bất phương trình sau và biểu diễn tập nghiệm trên trục số

b) Tìm x để giá trị của biểu thức 3x – 4 nhỏ hơn giá trị của biểu thức 5x – 6

Câu 3: (2 điểm) Một người đi xe máy từ tỉnh A đến tỉnh B với vận tốc 40 km/h. Lúc về người đó uống rượu nên đi nhanh hơn với vận tốc 70 km/h và thời gian về cũng ít hơn thời gian đi 45 phút. Tính quãng đường tỉnh A đến tỉnh B.

(Các em tự suy nghĩ xem người này có vi phạm luật giao thông hay không nếu vận tốc tối đa trên đoạn đường này là 60 km.)

Câu 4: (4 điểm) Cho ABC vuông tại A, có AB = 12 cm ; AC = 16 cm. Kẻ đường cao AH H BC).

a) Chứng minh: HBA ABC

  1. Tính độ dài các đoạn thẳng BC, AH.

c) Trong ABC kẻ phân giác AD (D BC). Trong ADB kẻ phân giác DE (E AB); trong ADC kẻ phân giác DF (F AC).

Chứng minh rằng:

Câu 5: (0,5 điểm) Tính thể tích của hình hộp chữ nhật ABCD.A’B’C’D’ trong hình dưới đây. Biết: AB=5cm, BC=4cm, CC’=3cm
















ĐÁP ÁN – THANG ĐIỂM


Câu

Đáp án

Điểm

1


a) 2x - 3 = 5

2x = 5 + 3

2x = 8

x = 4

Vậy tập nghiệm của phương trình là S = { 4}


Vậy tập nghiệm của phương trình là S = {- 2; 3}


c) ĐKXĐ: x - 1; x 2

3(x – 2) – 2(x + 1) = 4x - 2

3x – 6 – 2x - 2 = 4x -2

3x = 6

x = -2 (thỏa mãn ĐKXĐ)

Vậy tập nghiệm của phương trình là S = {-2}


0,25

0,25

0,25



0,25

0,25

0,25


0,25

0,25

0,25

0,25

0,25

0,25

2



a)

2(2x + 2) < 12 + 3(x – 2)

4x + 4 < 12 + 3x – 6

4x – 3x < 12 – 6 – 4

x < 2

Biểu diễn tập nghiệm

b) 3x – 4 < 5x – 6

3x – 5x < - 6 +4

-2x < -2

x > -1

Vậy tập nghiệm của BPT là {x | x > -1}


0,25


0,25

0,25



0,25


0,25

0,25

3


- Gọi độ dài quãng đường AB là x (km), x > 0

- Thời gian lúc đi từ A đến B là: (h)

- Thời gian lúc về là: (h)

- Lập luận để có phương trình: = +


- Giải phương trình được x = 70


- Kết luận.

0,25

0,25

0,25


0,5

0,5

0,25

4





























Vẽ hình đúng, chính xác, rõ ràng

a) Xét HBA ABC có:

HBA ABC (g.g)


b) Áp dụng định lí Pytago trong tam giác ABC ta có:

=

BC = 20 cm

Ta có HBA ABC (Câu a)

AH = = 9,6 cm

c) (vì DE là tia phân giác của )

(vì DF là tia phân giác của )

(1) (nhân 2 vế với )

0,5


0.5

0.5




0,25


0,25



0,25


0,25




0,25


0,25


0,5


0,5

5

Thể tích hình hộp chữ nhật là: V= 5.4.3 = 60 (cm3)

0,5







Ngoài 15 Đề Thi Toán 8 Cuối Học Kì 2 Có Đáp Án Và Lời Giải thì các đề thi trong chương trình lớp 8 sẽ được cập nhật liên tục và nhanh nhất có thể sau khi kỳ thi diễn ra trên Danh mục Kho Đề Thi nhằm giúp các bạn đọc thuận tiện trong việc tra cứu và đối chiếu đáp án. Quý thầy cô và các bạn đọc có thể chia sẻ thêm những tài liệu học tập hữu ích đến địa chỉ email của chúng tôi, nhằm xây dựng nên kho đề thi phong phú, đa dạng cho các em học sinh tham khảo và rèn luyện.

Xem thêm

Bộ Đề Thi Vật Lý 8 HK1 Có Đáp Án Năm Học 2020-2021
20 Đề Thi HSG Lý 8 Cấp Huyện Có Đáp Án Rất Hay
20 Đề Thi HSG Lý 8 Cấp Trường Có Đáp Án Rất Hay
Đề Thi Vật Lý 8 Giữa Học Kì 1 Có Đáp Án Năm 2020-2021
16 Đề Thi Vật Lý 8 Cuối Học Kì 2 Có Đáp Án
Đề Thi HSG Anh 8 Huyện Thanh Oai Có Đáp Án Và File Nghe – Đề Số 2
Đề Thi Giữa Kì 1 Tiếng Anh 8 Năm 2022-2023 Có Đáp Án-Đề 2
Đề Thi Tiếng Anh 8 Học Kì 2 (CT 7 Năm) Năm Học 2020-2021 Phòng GD Ninh Hòa